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ABSTRACT
This paper deals with the enhancement of speech in presence
of non-stationary babble noise. A binaural speech enhance-
ment framework is proposed which takes into account both
the voiced and unvoiced speech production model. The usage
of this model in enhancement requires the Short term pre-
dictor (STP) parameters and the pitch information to be esti-
mated. This paper uses a codebook based approach for esti-
mating the STP parameters and a parametric binaural method
is proposed for estimating the pitch parameters. Improve-
ments in objective score are shown when using the voiced-
unvoiced speech model in comparison to the conventional un-
voiced speech model.

Index Terms— speech enhancement, Kalman filter, au-
toregressive models

1. INTRODUCTION

Understanding of speech in difficult listening situations like
cocktail party scenarios is a major issue for hearing impaired.
Thus, the primary objectives of a speech enhancement sys-
tem present in a hearing aid are to improve the quality and
intelligibility of the degraded speech. Generally, a hearing
impaired person is fitted with hearing aids at both ears. This
enables the hearing aids to communicate with each other and
share information between the hearing aids. Binaural pro-
cessing of noisy signals has shown to be more effective than
processing the noisy signal independently at each ear [1].
Apart from a better noise reduction performance, binaural al-
gorithms make it possible to preserve the binaural cues such
as inter-aural time difference and inter-aural level difference
which contribute to spatial release from masking [2]. Some
binaural speech enhancement algorithms with multiple mi-
crophones present in each hearing aid are [3, 4] and with a
single microphone present in each hearing aid are [5, 6, 7].
The above mentioned algorithms have shown improvements
in speech intelligibility in comparison to bilateral methods of
enhancement. Most of the algorithms stated above perform
the enhancement in the frequency domain by assuming that
the speech and noise components are uncorrelated, and do
not take into account the speech production model.

This work was supported by Innovations fund Denmark

In this paper we propose a binaural speech enhancement
algorithm, which takes into account the voiced and unvoiced
speech production model. A very conventional method to
model clean speech for enhancement purposes is using the
autoregressive (AR) model with white Gaussian noise as the
excitation signal [8]. However, this model is not very suit-
able for representing voiced speech. Thus it was proposed
in [9] to use a modified model for representing both kinds
of speech. This model takes into account both the voiced
and unvoiced speech by modifying the excitation signal that
is used in the AR model. In this paper, we propose to use
this voiced-unvoiced speech model in a binaural speech en-
hancement framework. This framework requires the speech
and noise STP parameters (which consists of the AR parame-
ter vector and excitation variance) and the pitch parameters to
be estimated. Speech and noise STP parameters are estimated
using a codebook based approach, and a parametric binaural
method is proposed to estimate the pitch parameters.

The remainder of the paper is structured as follows. Sec-
tion 2 explains the signal model and the assumptions that will
be used in the paper. Section 3 explains the speech enhance-
ment framework in detail. Experiments and results are pre-
sented in Section 4 followed by conclusion in Section 5.

2. SIGNAL MODEL

The binaural noisy signals at the left/right ear, denoted by
zl/r(n) is expressed as shown in (1), where sl/r(n) is the
clean speech component and wl/r(n) is the noise component
which are assumed to be uncorrelated.

zl/r(n) = sl/r(n) + wl/r(n) ∀n = 0, 1, 2 . . . . (1)

It is assumed that the target speaker is located in front of the
user. Due to this assumption, the clean speech component at
both the ears are considered to be approximately equal. A
very common way to represent the clean speech component
is in the form of an AR process (of order P ) which is repre-
sented as

s(n) =
( P∑
i=1

ai(n)s(n− i)
)

+ u(n) (2)

where u(n) is white noise signal with variance σ2
u(n). Al-

though this model is suitable for representing unvoiced
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Fig. 1: Basic block diagram of the enhancement framework

speech, it is not appropriate for modelling voiced speech.
The enhancement framework used here models u(n) as

u(n) = b(n, pn)u(n− pn) + d(n), (3)

where d(n) is white Gaussian noise with variance σ2
d(n), pn

is the instantaneous pitch period and b(n, pn) is the degree of
voicing. In portions of voiced speech, b(n, pn) is assumed to
be close to 1 and the variance of d(n) is assumed to be small,
whereas in portions of unvoiced speech, b(n, pn) is assumed
to be close to zero which then simplifies into the conventional
unvoiced AR model. It is also assumed that listener is present
in a diffuse noise field such that the noise component at both
ears have similar spectral shape.

3. METHOD

Figure 1 shows the basic block diagram of the proposed en-
hancement framework. The noisy signals at the left and right
ears are enhanced using a fixed lag Kalman smoother (FLKS)
which requires the STP parameters and pitch parameters. The
usage of identical filter parameters on both the ears leads to
the preservation of binaural cues. STP parameters are esti-
mated using a codebook based approach which is explained
in 3.1 and the pitch parameters are estimated using a paramet-
ric method explained in section 3.2.

3.1. Binaural Codebook based estimation of STP param-
eters

The speech and noise STP parameters required for the en-
hancement are estimated using a codebook based approach
[10, 11], which assumes that the clean speech component
and noise component are AR processes. The estimation
of these parameters uses the a priori information about
speech and noise spectral shapes stored in trained code-
books in the form of Linear Prediction Coefficients (LPC).

The random variables (r.v) corresponding to the parameters
to be estimated are concatenated to form a single vector
θ = [θs θw] = [a;σ2

u; c;σ2
v ], where a, c corresponds to r.v

representing the speech and noise LPC, and σ2
u, σ

2
v represent-

ing the speech and noise excitation variances. The MMSE
estimate of the parameter vector is written as

θ̂ = E(θ|zl, zr) =

∫
Θ

θ
p(zl, zr|θ)p(θ)
p(zl, zr)

dθ. (4)

where zl and zr is frame of noisy speech at the left and right
ears respectively. Let us define θij = [ai;σ

2,ML
u,ij ; cj ;σ

2,ML
v,ij ]

where ai is the ith entry of speech codebook (of size Ns),
cj is the jth entry of the noise codebook (of size Nw) and
σ2,ML
u,ij , σ2,ML

v,ij represents the maximum likelihood (ML) esti-
mates of the excitation variances. The discrete counterpart of
(4) can be written as

θ̂ =

Ns∑
i=1

Nw∑
j=1

θij
p(zl, zr|θij)p(θij)

p(zl, zr)
, (5)

where the MMSE estimate is expressed as a weighted linear
combination of θij with weights proportional to p(zl, zr|θij).
Assuming that the left and right noisy signal are conditionally
independent given θij , p(zl, zr|θij) can be written as

p(zl, zr|θij) = p(zl|θij)p(zr|θij) (6)

Logarithm of the likelihood p(zl|θij) can be written as the
negative of Itakura-Saito distortion between noisy spectral en-
velope at the left ear Pzl(ω) and modelled noisy spectral en-
velope P̂ ijz (ω) [10]. Using the same result for the right ear,
p(zl, zr|θij) can be written as

p(zl, zr|θij) = exp

(
−
(
dIS(Pzl

(ω), P̂
ij
z (ω))+dIS(Pzr (ω), P̂

ij
z (ω))

))
(7)

where

P̂ ij
z (ω) =

σ2,ML
u,ij

|Ai
s(ω)|2

+
σ2,ML
v,ij

|Aj
w(ω)|2

(8)

and 1/|Ais(ω)|2 is the spectral envelope corresponding to the
ith entry of the speech codebook, 1/|Ajw(ω)|2 is the spectral
envelope corresponding to the jth entry of the noise code-
book. More details regarding this method is available in [11]
and the references therein.

3.2. Binaural pitch estimation

In this paper, we propose a parametric binaural method to es-
timate the pitch parameters. This method uses the harmonic
model to represent the clean speech as a sum of L harmoni-
cally related complex sinusoids. Using the harmonic model,
noisy signal at the left ear can be represented as

zl = VDlq + wl (9)

where zl and wl is a length N frame of noisy and noise sam-
ples at the left ear, q is a vector of complex amplitudes, V is
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the Vandermonde matrix which is defined as V = [v1 . . .vL],
where vl = [1 ejω0l . . . ejω0l(N−1)]T and Dl is the directiv-
ity matrix from the source to the left ear. This matrix contains
an angle dependent delay and magnitude term along the diag-
onal, which can be designed using the values found in [12].
Similarly, the noisy signal at the right ear is written as

zr = VDrq + wr. (10)

Defining y = [zTl zTr ]T , the two equations are combined and
rewritten as follows,

y =

[
VDl

VDr

]
q +

[
wl

wr

]
= Hq + w. (11)

First the ML estimate of amplitude vector q is obtained as

q̂ = (HTH)−1HTy (12)

Noise variance estimate for the left and right channel is ob-
tained as

σ̂2
l = 1/N ||zl −VDlq̂||2 (13)

σ̂2
r = 1/N ||zr −VDrq̂||2. (14)

Subsequently, the ML estimate of pitch and model order is
estimated jointly using the MAP model selection [13, 14] as

{ω̂0, L̂} = argmin
{L∈L,ω0∈Ω0}

N(ln σ̂2
l + ln σ̂2

r) +
3

2
lnN

+L lnN + 0.5(2L+ 1) lnNch

(15)

where Ω0 is the set of candidate fundamental frequencies, L
is the set of candidate model orders, Nch is the number of
channels which is 2 in this case. It should also be noted that
the usage of a complex signal model in (9) and (10) requires
the real noisy signals to be converted into the complex domain
by the means of Hilbert transform. The degree of voicing
(b(n, pn)) is calculated by taking the ratio between the energy
present at the harmonics and the total energy present in the
signal.

3.3. Enhancement by FLKS for voiced speech

The estimated STP and pitch parameters are subsequently
used for enhancement by FLKS as explained below. The
usage of FLKS (with a smoother delay of ds ≥ P ) from
a speech enhancement perspective requires the AR signal
model in (2) to be written as a state space form as shown
below

sl/r(n) = A(n)sl/r(n− 1) + Γ1u(n) (16)

where sl/r(n) = [sl/r(n)sl/r(n − 1) . . . sl/r(n − ds)]
T is

a (ds + 1) × 1 vector containing the ds + 1 recent speech
samples, Γ1 = [1, 0 . . . 0]T is a (ds + 1)× 1 vector and A(n)
is the (ds+1)×(ds+1) speech state evolution matrix written
as

A(n) =



a1(n) a2(n) . . . aP (n) 0 . . . 0
1 0 . . . 0 0 . . . 0

...
. . .

. . .
...

... . . .
...

0 . . . 1 0
... . . . 0

0 . . . . . . 1 0 . . . 0

... . . . . . . 0
. . .

. . .
...

0 . . . . . . 0 0 1 0


(17)

Using (3), the state space equation for the excitation signal is
written as

u(n) = B(n)u(n− 1) + Γ2d(n) (18)

where u(n) = [u(n)u(n−1) . . . u(n−pmax+1)]T , pmax is
the maximum pitch period, Γ2 = [1, 0 . . . 0]T is a (pmax)× 1
vector and

B(n) =

[
b(n, 1) b(n, 2) . . . b(n, pmax)

I 0

]
(19)

is a pmax × pmax matrix where b(n, i) = 0 ∀i 6= pn. The
state space equation for the noise signal is written as

wl/r(n) = C(n)wl/r(n− 1) + Γ3v(n), (20)

where wl/r(n) = [wl/r(n)wl/r(n−1) . . . wl/r(n−Q+1)]T

, Γ3 = [1, 0 . . . 0]T is a Q× 1 vector and

C(n) =

[
c1(n) c2(n) . . . cQ(n)

I 0

]
(21)

is Q×Q matrix. The concatenated state space equation is

xl/r(n+ 1) = F(n)xl/r(n) + Γ4g(n+ 1), (22)

where xl/r(n + 1) =

 sl/r(n)
u(n+ 1)
wl/r(n)

 , Γ4 =

 0 0
Γ2 0
0 Γ3

 , g(n + 1) =[
d(n+ 1)
v(n)

]
, and F(n) =

A(n) Γ1ΓT
2 0

0 B(n+ 1) 0
0 0 C(n)

 . The mea-

surement equation is given by

zl/r(n) = ΓTxl/r(n), (23)

where Γ = [ΓT1 0TΓT3 ]T . The final state space equation and
measurement equation denoted by (22) and (23) respectively,
is subsequently used for the formulation of the FLKS equa-
tions (24 - 28). The prediction stage of the FLKS, which com-
putes the a priori estimates of the state vector (x̂l/r(n|n− 1))
and error covariance matrix (M(n|n− 1)) is written as

x̂l/r(n|n− 1) = F(n− 1)x̂l/r(n− 1|n− 1) (24)

M(n|n−1) = F(n−1)M(n−1|n−1)F(n−1)
T

+Γ4

[
σ2
d(n) 0
0 σ2

v(n− 1)

]
Γ

T
4 .

(25)

σ2
d used in (25) is substituted with the value obtained for σ2

u

obtained from (5). Kalman gain is computed as shown in (26)

K(n) = M(n|n− 1)Γ[ΓTM(n|n− 1)Γ]−1. (26)

Correction stage of the FLKS, which computes the a posteri-
ori estimates of the state vector and error covariance matrix is
given by

x̂l/r(n|n) = x̂l/r(n|n− 1) + K(n)[zl/r(n)− ΓT x̂l/r(n|n− 1)]
(27)

M(n|n) = (I−K(n)ΓT )M(n|n− 1). (28)

Finally, the enhanced signal at time index n − ds is obtained
by taking the ds + 1th entry of the a posteriori estimate of the
state vector as ŝl/r(n− ds) = x̂l/r(ds+1)

(n|n).
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(a) (b)

(c) (d)

Fig. 2: Spectrograms of (a) clean signal, (b) noisy signal (SNR = 3
dB) at the left microphone and enhanced signals: (c) UV, (d) V-UV

4. EXPERIMENTS

This section contains the experiments used to evaluate the
proposed algorithm. Objective measures that have been
used for the evaluation are Short time objective intelligibility
(STOI) measure [15] and Perceptual evaluation of subjective
quality (PESQ). The test audio files used for the experi-
ments consisted of speech from the CHiME [16] and Eurom
database[17] re-sampled to 8 KHz. The noise signal used is
binaural babble recordings from the ETSI background noise
database [18], which was recorded with two microphones
placed on a dummy head. Binaural noisy signals were gen-
erated by convolving the clean speech signal with anechoic
binaural head related impulse responses (HRIR) correspond-
ing to in the ear hearing aids obtained from [19] and adding
the binaural noise signals to the convolved signals. The
speech and noise STP parameters required for the enhance-
ment process is estimated every 25 ms using the codebook
based approach, as explained in section 3.1. Speech code-
book of 64 entries is generated using the Generalised Lloyd
algorithm (GLA) [20] on a training sample of 2-4 minutes of
HRIR convolved speech from the specific speaker of interest.
Using a speaker specific codebook (which requires speaker
identification) instead of a generalised speech codebook leads
to improvement in performance, and a comparison between
the two is studied in [21]. It should be noted that the sentences
used for training the codebook was not included in the test
sequence. The noise codebook consisting of only 8 entries, is
generated using two minutes of noise signal. The AR model
order for both the speech and noise signal is chosen to be 14.
The pitch period and degree of voicing is estimated using the
parametric binaural method explained in 3.2. The cost func-
tion in (15) was evaluated on a 0.5 Hz grid for fundamental
frequencies in the range 80-400 Hz. For each fundamental
frequency candidate ω0, the model orders considered were
L = {1, . . . , b2π/ω0c}. The estimated pitch and STP param-

SNR (dB)
-5 -2 1 4

Noisy
male 0.6486 0.7178 0.7827 0.8387

female 0.6305 0.7003 0.7668 0.8259

UV
male 0.6882 0.7655 0.8334 0.8841

female 0.6568 0.7332 0.8035 0.8603

V-UV
male 0.7036 0.7803 0.8436 0.8893

female 0.6857 0.7635 0.8277 0.8762
Table 1: comparison of STOI scores

SNR (dB)
-5 -2 1 4

Noisy
male 1.6313 1.7754 1.8434 1.9577

female 1.2924 1.4868 1.6331 1.7941

UV
male 1.8666 2.0467 2.2978 2.5326

female 1.5066 1.7273 1.9487 2.1744

V-UV
male 1.8720 2.1006 2.3396 2.5489

female 1.6088 1.8429 2.0625 2.2626
Table 2: comparison of PESQ scores

eters are subsequently used for enhancement as explained in
section 3.3. Enhancement framework that uses the unvoiced
model for enhancement, which does not use the pitch infor-
mation is denoted as UV [11]. Enhancement framework that
uses the voiced-unvoiced model for enhancement along with
the pitch parameters estimated from the binaural noisy signal
is denoted as V-UV. Table 1 shows the comparison of the
STOI scores averaged for the left and right channels for the
noisy, UV and V-UV. Table 2 shows the PESQ scores. It can
be seen that using a voiced-unvoiced speech model is benefi-
cial in comparison to using the conventional unvoiced model,
for both the female and male speakers. It should be noted
that the improvement of using the voiced-unvoiced model
instead of conventional unvoiced model is more pronounced
amongst the female speakers than the male speakers. The
spectrograms of the different signals are shown in figure 2.
It can be seen from figure 2c that using an unvoiced model
for the enhancement results in removal of weak harmonics
present in the clean signal whereas using the voiced-unvoiced
model for enhancement preserves the harmonics as can be
seen from figure 2d.

5. CONCLUSION

This paper proposed a binaural speech enhancement frame-
work that takes into account the speech production pro-
cess. The proposed method requires the pitch parameters and
the STP parameters to be estimated. A parametric binau-
ral method is proposed to estimate the pitch parameters and
the STP parameters were estimated using a codebook based
method. Using the modified voiced-unvoiced model in the
place of conventional unvoiced AR model for enhancement
shows considerable improvement in STOI and PESQ scores.
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