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ABSTRACT

It is known that applying a time-frequency binary mask to
very noisy speech can improve its intelligibility but results
in poor perceptual quality. In this paper we propose a new
approach to applying a binary mask that combines the intel-
ligibility gains of conventional binary masking with the per-
ceptual quality gains of a classical speech enhancer. The bi-
nary mask is not applied directly as a time-frequency gain as
in most previous studies. Instead, the mask is used to sup-
ply prior information to a classical speech enhancer about the
probability of speech presence in different time-frequency re-
gions. Using an oracle ideal binary mask, we show that the
proposed method results in a higher predicted quality than
other methods of applying a binary mask whilst preserving
the improvements in predicted intelligibility.

Index Terms— Binary mask, speech quality, speech in-
telligibility, speech enhancement, speech presence probability

1. INTRODUCTION

At Signal-to-Noise Ratios (SNRs) below about 0 dB both the
intelligibility and the perceived quality of noisy speech de-
grade sharply. Classical enhancement algorithms [1, 2, 3] pro-
cess noisy speech by transforming it into the Time-Frequency
(TF) domain and multiplying it by a TF gain before trans-
forming back into the time domain for resynthesis. The TF
gain is typically chosen to minimize the expected squared er-
ror in the Spectral Amplitudes (SAs) or Log Spectral Ampli-
tudes (LSAs) for an assumed statistical model. Unfortunately,
while these algorithms are able to give substantial improve-
ments in both SNR and perceptual quality, they are normally
unable to improve the intelligibility of the speech [4, 5]. More
recently, algorithms that estimate the TF gain (also called the
“ratio mask”) using Deep Neural Networks (DNNs) [6, 7] or
Long Short-Term Memory (LSTM) recurrent neural networks
[8, 9] have been successful in improving both quality and in-
telligibility. As would be expected, the performance of these
algorithms degrades somewhat when the nature of the inter-
fering noise differs from that used in training the neural net-
work [6].

Numerous studies have shown that the intelligibility of
noisy speech can be improved by applying a binary-valued
TF gain (or “binary mask”) [10, 11, 12]. The two mask val-

ues are most commonly 1 and 0 although sometimes a non-
zero gain, such as 0.1, is used instead of 0. These stud-
ies have led to the development of enhancement algorithms
that determine a binary mask by classifying each TF cell as
"speech-dominated" or "noise-dominated" using features ex-
tracted from the noisy speech [13, 14, 15]. Although these
algorithms are able to improve intelligibility, they introduce
distortion artefacts into the speech that make it unpleasant to
listen to. The most widely used target for training the clas-
sifier is the so-called Ideal Binary Mask (IBM) which is ob-
tained by thresholding the local SNR in each TF cell of the
noisy speech used for training. A model that is able to predict
the intelligibility of the binary-masked speech as a function
of the SNR of the noisy speech and the threshold (denoted
the Local Criterion or LC) used to define the IBM was pre-
sented in [16]. The authors proposed that the intelligibility
gain of binary-masked speech arises from the introduction of
spectrotemporal noise modulation that matches the TF energy
distribution of the target speech. This insight led them to pro-
pose the Target Binary Mask (TBM) which is calculated di-
rectly from the clean speech and is independent of the noise
in each TF cell. Tests have shown that the TBM gives simi-
lar intelligibility improvements to the IBM but, since it is not
dependent on the noise, it has been suggested that it might be
a better training target [15]. Related masks are the speaker-
independent Universal Target Binary Mask (UTBM) [13] and
the STOI-optimal Binary Mask (SOBM) [17] which explic-
itly optimizes the Short-Time Objective Intelligibility Mea-
sure (STOI) intelligibility metric [18].

In order to improve the quality of binary masked speech,
a number of studies have experimented with modifying the
binary mask before applying it to the noisy speech. In [19]
the authors evaluated a number of mask modifications includ-
ing adding dither to the mask and the application of temporal
smoothing to the cepstrum of the mask as suggested in [20].
They concluded that the best results were obtained by apply-
ing the mask in the conventional way using gains of 1 and 0.1
for the two mask values. In [21], the estimated mask and also
its complement were used to obtain intermediate estimates of
the speech and noise. These estimates were then combined to
derive a continuous-valued TF gain function which was ap-
plied to the original noisy speech. A final processing stage
then imposed temporal continuity on the sequence of TF spec-
tral magnitudes. The authors found that this processing was
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able to improve the quality of the enhanced speech while pre-
serving its intelligibility.

In this paper we propose an alternative approach to ap-
plying a binary mask that preserves the intelligibility gains
of conventional binary masking whilst addressing the issue
of poor speech quality. We are motivated by the model from
[16], described above, that the intelligibility gains of binary
masked speech arise because the mask identifies the TF cells
containing significant speech energy. Accordingly, in our pro-
posed approach we do not use the mask directly as a TF gain
but instead use it to supply prior information about the prob-
ability of speech presence to a classical speech enhancer [3]
that minimizes the expected squared error in the LSAs. To
evaluate this approach we have used an oracle IBM as the bi-
nary mask since this is commonly used in other studies.

2. PROPOSED ENHANCEMENT SCHEME

2.1. Optimally-modified log-spectral amplitude estimator

Here we present a brief overview of the Optimally Mod-
ified Log-Spectral Amplitude Estimator (OM-LSA) algo-
rithm from [3]. The noisy speech is first converted into the
Short Time Fourier Transform (STFT)-domain using over-
lapping Hamming analysis windows. Let X(k,m), N(k,m)
and Y (k,m) denote the complex STFT coefficients of the
clean speech, the noise and noisy speech respectively in fre-
quency bin k of frame m. Speech is absent in this bin under
the hypothesis H0(k,m) and present under the hypothesis
H1(k,m). The STFT coefficients of the speech and noise
are modelled as statistically independent Gaussian random
variables. We want the gain function G(k,m) in frequency
bin k of frame m which satisfies

G(k,m) |Y (k,m)| = exp {E [log|X(k,m)| | Y (k,m)]}

where E [·] is the expectation operator. Under the constraint
that G(k,m) is larger than a threshold Gmin when speech is
absent, it is shown in [3] that

G(k,m) = {GH1
(k,m)}p(k,m)

G
1−p(k,m)
min

where

GH1
(k,m) =

ξ(k,m)

1 + ξ(k,m)
exp

(
1

2

∫ ∞
v(k,m)

e−t

t
dt

)
is the gain under hypothesis H1(k,m). The conditional
speech presence probability p(k,m) , P (H1(k,m) | Y (k,m))
is computed as

p(k,m) =

{
1 +

q(k,m)

1− q(k,m)
(1 + ξ(k,m)) exp (−v(k, l))

}
where q(k,m) , P (H0(k,m)) is the a priori probability of
speech absence. In the expression for p(k,m),

ξ(k,m) , E
[
|X(k,m)|2 | H1(k,m)

]
/E
[
|N(k,m)|2

]

is the a priori SNR, and

v(k,m) , γ(k,m)ξ(k,m)/ (1 + ξ(k,m)) ,

where

γ(k,m) , |Y (k,m)|2 /E
[
|N(k,m)|2

]
is the a posteriori SNR. An estimate ξ̂(k,m) of ξ(k,m) is
obtained using a modified version of the decision-directed ap-
proach from [1],

ξ̂(k,m) = αG2
H1

(k,m− 1)γ(k,m− 1)

+(1− α)max {γ(k,m)− 1, 0}

where α is a smoothing parameter.

2.2. Speech presence probability prior

In [3] an estimator q̂(k,m) was used to obtain the probabil-
ity of speech absence, q(k,m), from ξ̂(k,m). We propose
to instead obtain q(k,m) from a binary mask, d(k,m). The
a priori probability parameter q(k,m) from [3] is set to

q(k,m) =

{
Q1 d(k,m) = 1

Q0 d(k,m) = 0

where Q1 and Q0 are free parameters. Similarly, the value of
Gmin is set to

Gmin =

{
G1 d(k,m) = 1

G0 d(k,m) = 0

where G1 and G0 are free parameters.
By using the value of the binary mask to control the prob-

ability of speech absence in this way, the algorithm softly im-
poses on the enhanced speech the spectrotemporal modula-
tions that are encapsulated in the mask and that are important
for speech intelligibility [16, 18]. At the same time, the al-
gorithm improves the SNR and the perceived quality of the
speech by applying an SNR-dependent time-frequency gain,
G(k,m).

3. EXPERIMENTAL PROCEDURES

The enhancement scheme outlined in the previous section
was tested on 80 TIMIT [23] utterances mixed with extracts
of babble and speech shaped (SS) noise from the RSG.10
[24] database. All signals were resampled to 10 kHz. The
noisy utterance SNRs were chosen so that the Weighted-
STOI (WSTOI) [25] objective intelligibility metric gave
scores of {0.675, 0.700, 0.725, 0.750} which correspond
to average SNRs of {−3.6, −1.5, −1.3, 3.8} dB for bab-
ble noise and {−4.4, −3.0, −1.5, −0.3} dB for SS noise.
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A Noisy speech

B LSA [2]
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D OM-LSA [3], max-PESQ

E IBM [22]

F IBM, gain floor [19]

G IBM, cepst. smoothing [20]

H Proposed method

Fig. 1: Boxplots of a) WSTOI and b) PESQ, for noisy speech utterances after processing with different enhancement algorithms.
Methods E-H use an IBM which is computed using oracle knowledge of the clean speech.

The STFT used to compute the IBM used 50% overlapping
Hanning analysis windows of length 25.6 ms.

A total of eight enhancement methods were evaluated (la-
belled A through H). The proposed method (H) was com-
pared with the LSA estimator (B) [2], the OM-LSA estimator
(C, D) [3], the IBM (E) [22] and two methods of improving
the intelligibility of IBM-masked speech: cepstral smooth-
ing of the IBM (G) [20], and replacing mask zeros with a
minimum gain, Mmin, (F) [19]. The IBMs used in meth-
ods E-H were computed using oracle knowledge of the clean
speech. The algorithm parameters listed in Table 1 were opti-
mised on a separate training set of 80 noisy speech utterances.
The parameters of methods F and G were chosen to max-
imise the Perceptual Evaluation of Speech Quality (PESQ)
objective quality metric. The parameters of method H were
chosen to maximise the sum of a normalised predicted in-
telligibility score and a normalised predicted Mean Opinion
Score (MOS), where each PESQ score was mapped to a pre-
dicted MOS using the mapping from [26] and each WSTOI
score was mapped to a predicted intelligibility using the map-
ping from [25]. The OM-LSA algorithm parameter was cho-
sen to optimize either WSTOI (method C) or PESQ (method
D). For all algorithm parameters other than those listed in Ta-
ble 1, the default values from [27, 20, 3] were used. The lenv,
llow and lhigh cepstral smoothing parameters in [20] were ad-
justed to account for the 10 kHz sample rate. The LSA (B),
the OM-LSA (C, D) and the proposed method (H) used the
noise estimator from [28, 27].

In addition to evaluating the methods using binary masks
with the full STFT frequency resolution, binary masks at four
reduced resolutions were also evaluated. The reduced reso-
lution masks were computed from the SNR in bands formed
by merging non-overlapping ranges of contiguous STFT bins.
Within the enhancement algorithm, a single mask value was
used for all of the STFT bins within the range that was used
to compute it. The R reduced resolution bands had centre
frequencies uniformly spaced on the Equivalent Rectangular

Algorithm Parameter Optimal value

C: OM-LSA max-WSTOI Gmin -10 dB
D: OM-LSA max-PESQ Gmin -16 dB

F: IBM, gain floor Mmin -34 dB

G: IBM, cepst. smoothing
Mmin -34 dB
βpitch 0
βpeak 0.14

H: Proposed method

G1 -3 dB
G0 -43 dB
Q1 0.7
Q0 1

Table 1: Summary of trained parameters and their optimal
values. For the IBM-based methods, the optimal values are
displayed for the case where the IBM has the full STFT fre-
quency resolution.

Bandwidth (ERB) scale [29] between 100 Hz and 5 kHz. The
values R = {20, 40, 60, 80} were included in the tests. The
algorithm parameters listed in Table 1 were optimized on the
training set separately for each mask resolution.

4. RESULTS

Figures 1a and 1b show the WSTOI and PESQ scores, respec-
tively, for the noisy speech utterances after processing with
different enhancement methods. The LSA (B) and OM-LSA
(C, D) algorithms resulted in an improvement in PESQ of
about 0.2 compared with the unprocessed noisy speech. How-
ever, the effect of the algorithms on WSTOI varied signifi-
cantly between utterances and both of the algorithms severely
damaged the WSTOI scores of some utterances as can be seen
from the long box plot whiskers in Fig. 1a. The standard IBM
(E) resulted in a median PESQ score of 2.5 and almost full in-
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Fig. 2: PESQ scores of the noisy speech and the noisy speech after processing with different methods. PESQ against a) the
number of frequency bands in the IBM, b) the WSTOI score of the unprocessed noisy speech, and c) the noise type.

telligibility as indicated by the scale on the rightmost edge of
Fig. 1a. The three other methods (F, G, H) that are based on
the IBM resulted in very similar improvements in predicted
intelligibility to the IBM, but gave higher PESQ scores. The
proposed method (H) resulted in the largest improvement in
PESQ. The next best improvement came from the IBM with
cepstral smoothing, followed closely by the IBM with a gain
floor. We emphasize that methods E, F, G and H all make use
of an IBM computed using oracle knowledge of the SNR in
each time-frequency bin.

Fig. 2a shows the PESQ scores of the different methods
plotted against the frequency resolution of the IBM. The re-
sults of method C were omitted for clarity as they were very
similar to those of method D. As the resolution decreases, the
PESQ score of all the IBM-based methods decreases. The
PESQ decrease becomes sharper when fewer than 60 bins are
used but the relative improvement of the proposed method is
preserved or increased at low resolutions. The corresponding
plot for WSTOI has been omitted because the WSTOI scores
are almost independent of the frequency resolution. Fig. 2b
shows the PESQ scores of the different methods against the
WSTOI scores of the unprocessed noisy speech. This shows
that the improvement in PESQ of the proposed method was
largely independent of the predicted intelligibility of the un-
processed noisy speech. Fig. 2c shows the PESQ scores of
the different methods for the two noise types separately. With
both noise types, the proposed method resulted in the highest
predicted quality.

Fig. 3 shows a histogram of the differences in PESQ re-
sulting from processing the noisy speech utterances with the
proposed method (H) and the second best performing method,
IBM with cepstral smoothing. In 375 out of 400 sample pairs
(93.75%) the proposed method resulted in a higher predicted
quality than the IBM with cepstral smoothing, meaning the
improvement was statistically significant with p � 10−3 us-
ing a 1-sided sign test.
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Fig. 3: Distribution of the difference in PESQ resulting from
processing the noisy speech utterances with the proposed
method and the IBM with cepstral smoothing.

5. CONCLUSION

We have presented a new approach to applying a binary mask
that preserves the intelligibility gains given by conventional
binary masking but also incorporates a speech enhancer’s
ability to improve perceptual quality. The binary mask is not
applied directly as a TF gain but is instead used to supply prior
information to a classical speech enhancer about the probabil-
ity of speech presence in different TF regions. The proposed
method resulted in a statistically significant improvement in
PESQ compared with other methods of applying an oracle
binary mask whilst preserving the improvements in predicted
intelligibility.
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