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ABSTRACT
The massive amount of digital music data available neces-
sitates automated methods for processing, classifying and
organizing large volumes of songs. As music discovery and
interactive music applications become commonplace, the
ability to synchronize lyric text information with an audio
recording has gained interest. This paper presents an ap-
proach for lyric-audio alignment by comparing synthesized
speech with a vocal track removed from an instrument mix-
ture using source separation. We take a hierarchical approach
to solve the problem, assuming a set of paragraph-music
segment pairs is given and focus on within-segment lyric
alignment at the word level. A synthesized speech signal
is generated to reflect the properties of the music signal by
controlling the speech rate and gender. Dynamic time warp-
ing finds the shortest path between the synthesized speech
and separated vocal. The resulting path is used to calculate
the timestamps of words in the original signal. The system
results in approximately half a second of misalignment error
on average. Finally, we discuss the challenges and suggest
improvements to the method.

Index Terms— Lyric Music Alignment, Vocal Separa-
tion, Synthesized speech.

1. INTRODUCTION

Automatically scrolling lyrics are useful in music listening
applications such as streaming services and karaoke, how-
ever the process of aligning lyrics to music is a challeng-
ing task to automate. Alignment can be done on a phrase,
word or phoneme level with each particular problem provid-
ing unique challenges. Overall, lyrics-audio alignment is a
complex problem that requires an integrated approach involv-
ing various techniques in music information retrieval: vocal
separation, music segmentation, speech modeling, pitch de-
tection and rhythmic analysis.

Assuming we are given a text document of lyrics and
an associated audio file, our task is to assign timestamps in
the audio stream with the starting point of each lyric in the
text document. Current applications that would benefit from

automating this process include scrolling lyrics displays for
streaming music, audio thumbnailing and karaoke.

One common approach to lyric alignment is to apply a
speech recognition model and use the model output to align
the audio signal to the lyric text [1]. A caveat of this approach
is that the acoustic model used in the alignment is trained on
speech signals and requires a large amount of manually an-
notated data to train the model on singing voices. Previous
works use a model trained on speech data and apply vari-
ous techniques that can improve the overall accuracy of the
model on a singing voice. One of the common improvements
made to this approach is to incorporate domain knowledge
of music (temporal and structural) [2, 3, 4, 5]. In addition,
the speech model can be adapted to singing voice with man-
ually annotated labels [1, 6, 7]. Other approaches leverage
multi-modal inputs available online that have additional tem-
poral information regarding the lyrics (e.g. guitar tabs, lyric
synced MIDI file) [8, 9]. However, it can be difficult to find
this additional information for all songs. Other researchers
investigated translating the lyrics into a common language to
utilize the language-specific acoustic models [6, 7].

A number of lyrics-audio alignment systems take a hi-
erarchical approach to first match a music segment (or line)
with a block of lyric text and then run a more fine level align-
ment (line, word or syllable) with the given result [2, 3, 4, 10].
While there is variance in each work, in general, the standard
approach is to use dynamic programming search (or forced
alignment) with a hidden Markov model framework.

The arguably most advanced algorithm in lyrics-audio
alignment incorporates various techniques: vocal separa-
tion/segmentation, harmonic structure analysis, unvoiced
consonants detection, modified hidden Markov model, adap-
tation of a phoneme model for singing voice, and Viterbi
alignment, resulting in 85.2% accuracy [11].

Our work follows a similar framework to [5] where
we assume that we have large scale alignment similar to
the results presented in [4]. From there we attempt a finer
grain word level alignment. Since we wish our approach to
be language-agnostic, we prefer to avoid training our own
language-specific model for the sung vocals. We would like
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Fig. 1. System diagram for lyrics synchronization. Given lyrics-audio segment pairs, the system returns the timestamps for
words in the lyrics.

to just as easily match English lyrics with sung English vo-
cals as we can match Spanish lyrics with the same underlying
model. As presented later, we do use language specific speech
generation models, but they are readily available for use.

Our approach to the problem focuses on developing a sys-
tem that is practical and scalable for large databases common
in commercial companies that deal with digital media. We fo-
cus on unsupervised methods since to our knowledge no large
database of word level aligned lyrics and audio exists.

2. METHOD

As stated in Section 1, this work approaches the lyrics-audio
alignment task under the assumption that for a given audio
file and associated lyric file, there exists a paragraph/segment
pairing. That is, each paragraph in the lyrics is associated with
the proper segment in the audio that contains the words for the
given paragraph. We are focusing on automatically producing
timestamps where each word in the paragraph occurs in the
audio segment.

Figure 1 depicts the steps to generate word level align-
ment from a given music/text segment pair. The music seg-
ment is processed to remove as much of the background
accompaniment as possible. This is accomplished by using
a speech/music classifier as well as vocal source separation
techniques. The text segment is processed using a Text-
To-Speech (TTS) algorithm with the word rate and gender
adjusted to account for the length of the audio segment and
pitch range, respectively. Once we have the processed music
segment and the synthesized speech audio, we extract a set
of features from each signal and use Dynamic Time Warp-
ing (DTW) to align the features from the synthesized speech
to the features from the processed musical segment. Since
the timestamps of each word are known in the synthesized
speech, we map them to locations in the audio segment.

One key component of the system is to process the musi-
cal segment to make it resemble the synthesized speech seg-
ment. Similarly, the synthesized speech segment is processed
to increase its similarity with the processed music segment.

2.1. Music Segment Processing

The preprocessing of the music segment prior to feature ex-
traction and dynamic time warping are designed to increase
the similarity of the music segment to the synthesized speech
segment. This is a two step process consisting of vocal sepa-
ration and vocal/non-vocal detection.

2.1.1. Vocal Separation

To separate the vocals we utilize the multi-pass median fil-
tering process described in [12]. This version of the popu-
lar Harmonic Percussive Source Separation (HPSS) algorithm
comprises a first pass percussive separation using a very high
frequency resolution and then a second stage HPSS filter us-
ing a lower frequency resolution. Since vocal signals have
harmonic energy that is spread across more frequency bins
compared to instrumental signals, a significant portion of the
vocal energy will survive the first stage of horizontal filter-
ing. The percussive output, P contains percussive and vocal
sources. The output of the percussive filter is then put though
a harmonic (horizontal) filter using a lower frequency reso-
lution to remove the background percussive elements present
from the previous step. For more details see [12]. The end
result is a signal that is mostly vocal with some background
elements still audible.

The first pass vertical filter uses a Discrete Fourier Trans-
form (DFT) size of 16,384, hop size of 512 and filter width of
17. The low frequency resolution filter has a DFT size 1024,
hop size of 512 and filter width 17.

Now that our music signal resembles the speech signal
more due to the removal of significant amounts of background
noise (instrumental accompaniment), we now must account
for some of the fundamental differences between spoken lan-
guage and vocal melody. The next step is designed to handle
the difference in time between our speech and music signals.
The speech is synthesized using the Google WebSpeech API
and is generated using a constant word rate that is designed
to model spoken language pauses and cadence1. The rhythm
of sung vocals is significantly different, incorporating longer
pauses and extended vowel sounds over numerous beats.

1http://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html
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Initial experiments revealed that a significant source of
error was due to the alignment process being ‘confused’ by
large pauses between lines or phrases in the sung vocal lines.
To alleviate this issue, we employ a vocal/non-vocal detection
scheme to use as a feature in DTW.

2.1.2. Vocal/non-vocal Estimation

The vocal/non-vocal detection is based on work in [13] and
uses a Gaussian Mixture Model (GMM) as a vocal classifier
and a second GMM for the non-vocal classifier. The vocal
model outputs a single probability Pvocal(k) of whether
the frame, k, is vocal. The non-vocal classifier outputs
Pnon−vocal(k), the probability that the frame contains no
vocals. Using these two models a soft decision about the
frame is given as

Vsoft =
Pvocal(k)

Pvocal(k) + Pnon−vocal(k)
. (1)

We utilize the soft weight in Equation 1 as one of the fea-
tures in our time alignment. To train the GMMs we used 108
songs (7 hours 17 minutes total) from the MedleyDB database
[14]. The songs are labeled with activation times for each in-
strument.

Vocal model training is performed on the separated vo-
cal tracks computed as described in Section 2.1. This is done
to best approximate the signal characteristics of the data we
want labeled by the vocal/non-vocal classifier. To train the
vocal model, we compute MFCCs (13 dimensions) using a
DFT size of 2048 and hop of 512. We then compute the
first and second derivatives of the MFCCs and concatenate
the MFCCs, ∆ MFCC and ∆2 MFCC together to form a 39-
dimension vector as our input to the GMM. We use k = 64
mixture components and initialize each distribution using k-
means, k being chosen from [1]. Lastly, we smoothed the
Vsoft vector with a moving average filter of length 23, which
was chosen from validation.

2.1.3. Feature Selection

Features used in addition to the vocal estimation and MFCCs
(∆ and ∆2) are Moving Average Crossing Rate and Moving
Average Subtracted Variance [15]. Stacking these features
yields a 42-dimensional vector. We employ sequential feature
selection to reduce the amount of features used.

2.2. Synthesized Speech Processing

The speech synthesis is performed in a manner that the syn-
thesized speech approximates the extracted vocal signal as
close as possible. The speaking rate is adjusted so that the
overall time of the synthesized speech is the same as the tar-
get music segment. The gender of the speaker is manually
selected for each example. After the speech signal is gener-
ated we compute the same features as in Section 2.1.3 above.
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Fig. 2. Similarity matrix and word alignment for the song
Word Gets Around by St. Vitus. The speech signal is on the
vertical axis and the music segment on the horizontal axis.
The green line is the shortest path found by DTW and the
circles depict the ground truth location for each word.

This manual selection of gender is recognized by the au-
thors as a significant impairment to a fully automated system.
One method of automating the gender selection would be to
use the predominant pitch range [13, 16].

3. RESULTS

We use a small dataset of labeled vocal onsets that we have
to tune the parameters of our model. This is a subset of the
multi-track dataset in [14]. The particular songs were chosen
based on availability of lyrics and genre diversity and the lyric
onsets were hand labeled by the authors.

Figure 2 depticts a least cost path through a distance ma-
trix. The red circles indicate the ground truth point for each
lyric in both the separated vocal and synthesized speech. Ide-
ally, our least cost path would pass through each point exactly.
The green line in the figure is the actual path computed using
DTW and shows how the system is able to wait during an in-
strumental break between phrases before continuing tracking
the lyric.

For the test set, we choose a small set of popular music.
In particular, we attempt to add songs that we believe will
be challenging for various reasons: polyphonic vocal seg-
ments (ABBA), non-English lyrics (2NE1), unique vocalist
(Daft Punk, Michael Jackson) and genre variety (Metallica,
Notorious B.I.G). For each song, we choose a short segment
(typically from the first verse to the end of the first chorus),
the length of which are ranged from 29 to 79 seconds. The
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Fig. 3. Histogram of distances between the ground truth and
predicted time stamps for each word in the test set.

segmentation was done manually so that both the test set and
the validation set removes any error that can potentially prop-
agate from the lyric-segmentation paring problem. The word-
level alignment results synchronized with the all songs can be
found in an interactive demo here2.

To validate the results, we use the average absolute differ-
ence between the ground truth and predicted timestamp for
each word as a performance measure. Statistics of lyrics-
audio alignment for each song in validation set are shown in
Table 1. The mean absolute error was 0.469 seconds with the
standard deviation of 0.844 seconds. The median absolute er-
ror is 0.142, which indicates that, nearly half of the times, the
estimated timestamps are within 150 msec window of the true
timestamps. The distribution of errors is shown in Figure 3,
the width of each bin being 500ms. 87.2% of all words are
within +/- 1 second error range.

3.1. Alignment Errors

Typically, we observed that the method performs better in the
songs in which the vocal segments and non-vocal segments
are evenly distributed and non-vocal segments are short. For
example, the best result was shown in the song The Way You
Make Me Feel by Michael Jackson, where non-vocal seg-
ments between lines are short and regular over the selected
snippet file. Additionally the vocal is very prominent and
clear. The performance was poor for Metallica’s Enter Sand-
man as the time interval between each lyrical line is long and
also varies within a verse. This is compounded by the usual
problem of heavy distorted guitar associated with Metal mu-
sic. The selected segment contains verse, pre-chorus and cho-
rus, and they differ in their temporal vocal patterns. In the
first part of Harder Better Faster by Daft Punk, timestamps of
words after instrumental segments are estimated earlier than
the ground truth. In the second half of the segment, the pre-
dicted timestamps are much more accurate as the instrumen-
tal segments are very short. This particular error is due to

2http://sangatgracenote.github.io/lyric.html

(seconds)
Artist Song Name Avg Std Dev Max
2NE1 I’m The Best (Korean) 0.632 0.662 2.136
ABBA Dancing Queen 0.652 0.812 3.255
Alanis Morrisette One Hand In My Pocket. 0.297 0.484 2.314
Daft Punk Harder Better Faster 0.346 0.679 3.102
Metallica Enter Sandman 2.622 1.691 5.034
Michael Jackson The Way You Make Me Feel 0.111 0.123 0.556
Notorious B.I.G. Big Poppa 0.308 0.414 1.862
Smashing Pumpkins 1979 0.371 0.717 3.573
Taylor Swift Shake It Off 0.29 0.272 0.984

Total Error (word-level) 0.469 0.844 5.034
Total Error (line-level) 0.525 0.849 4.516

Table 1. Mean, Standard Deviation and Maximum of abso-
lute error (in seconds) for each song in the test dataset.

the speech segment matching with an instrumental segment
of music. The instrumental segment is too long for DTW to
find a path without entering the speech segment. Additional
improvements may be gained from emphasizing the relative
importance of the vocal/non-vocal classification in the DTW
distance function.

4. DISCUSSION

In this work we present a system for automatically aligning
a lyrics text file to an associated audio stream. We work un-
der the assumption that a rough segment alignment exists be-
tween the text and audio. Though our test set is small, this
preliminary work shows promise for lyrics-audio alignment
across a large corpus. We cannot equivalently compare this
result with most of the previous works as most prior works
perform alignment on the whole song while this runs within
a segment. We found this to be a common theme through-
out publications on the topic of lyrics-audio alignment. Also,
there is no canonical dataset used for this task as there is in
other, more popular, problems. We found a few works that
the algorithm was performed in a similar condition (align-
ment within manually matched segment-lyrics pair). For ex-
ample, in [17], the algorithm accomplished 1.40 seconds of
mean absolute error on line-level alignment. In [7], the sys-
tem accomplished the mean absolute error of 1.98 seconds on
the phoneme-level alignment in Turkish traditional music (a
more difficult task than word alignment). Although we can-
not make concrete judgment on the performance compared to
previous works for various reasons (within-segment, different
test sets, different performance metrics, etc.), we do recognize
several benefits to the method presented.

The system is simple and blind so that we can attain re-
sults without the need for a large, manually annotated training
set. While a sufficient dataset is needed for testing, gener-
ally the size requirement is much lower for testing than train-
ing. Additionally, the algorithm is language-neutral as long
as there exists a sufficient speech synthesis engine available
for a language.
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