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ABSTRACT

In this paper we describe approaches for discovering acoustic con-
cepts and relations in text. The first major goal is to be able to
identify text phrases which contain a notion of audibility and can
be termed as a sound or an acoustic concept. We also propose a
method to define an acoustic scene through a set of sound concepts.
We use pattern matching and parts of speech tags to generate sound
concepts from large scale text corpora. We use dependency parsing
and LSTM recurrent neural network to predict a set of sound con-
cepts for a given acoustic scene. These methods are not only helpful
in creating an acoustic knowledge base but in the future can also
directly help acoustic event and scene detection research.

Index Terms— Sound Concepts, Audio Events and Scenes,
Acoustic Relations, Sound and Language

1. INTRODUCTION
Analyzing non-speech content has been gaining a lot of attention in
the audio community. Such non-speech audio content plays an im-
portant role in understanding the environment around us. Successful
detection of acoustic events and scenes is critical for several appli-
cations. One of the most prominent applications is content based
retrieval of multimedia recordings [1] [2], where the audio com-
ponent of multimedia carries a significant amount of information.
Other well known applications of automated analysis of audio data
are: audio based surveillance [3], human computer interaction [4],
classification of bird species [5], context recognition system [6].

The primary focus in automated machine understanding of non-
speech content of audio has been on successful detection and clas-
sification of audio events and scenes. Several methods have been
proposed for audio event and scene detection [7–11]. In the most re-
cent DCASE challenge 1, deep neural network methods dominated
performance for audio events whereas factor analysis and Non Nega-
tive Matrix Factorization methods were found to be more promising
for acoustic scenes. Moreover, due to the limited availability of la-
beled data and the time consuming and expensive process of manual
annotations, there have been attempts to learn event detectors from
weakly labeled data as well [12] [13]. These methods rely on weak
labels which can be automatically obtained for audio data on web
using the associated metadata such as tags, and titles.

One major limitation in most of the current literature on audio
content analysis is the limited vocabulary of audio events. In al-
most all cases, the analysis is done on a very small set of 5 − 20
acoustic events. Clearly, this is very small from for several of the
applications we have mentioned. More importantly, mere detection
and classification of audio events does not lead to a comprehensive

1 http://www.cs.tut.fi/sgn/arg/dcase2016/

understanding of acoustic concepts. If we look at the analogous
problem in the field of computer vision, one can notice that object
detection in images has been scaled to thousands of visual object cat-
egories [14]. Moreover, these thousands of categories are organized
into a hierarchical structure which allows higher level semantic anal-
ysis. Visual concept ontologies [15] have been proposed for reduc-
ing dependence on text based retrieval of images. The Never Ending
Image Learner (NEIL) project [16] not only detects thousands of
visual objects and scenes in images but has also learned a variety
of commonsense knowledge visual relationships such as Umbrella
looks similar to Ferris wheel or scene-object relation such as Moni-
tor is found in Control room. This allows it to provide visual knowl-
edge to knowledge bases such as Never Ending Language Learner
(NELL) [17]. Another architecture EventNet [18] tailored towards
multimedia events organizes 500 multimedia events using over 4000
visual concepts. Clearly, these knowledge relations and ontologies
are crucial for semantic search of multimedia data on web.

A similar architecture is desirable for sounds as well which is
not only aware of a large number of acoustic concepts but can also
draw higher level semantic information and relations about sounds.
For example, the system should be aware that honking, beeping
and engine running can be related through a common source car.
Even more important are scene-sounds acoustic relations such as,
an acoustic scene Park consists of sounds event children laughter.
Some works have tried to relate sounds through hand crafted sound
taxonomies [19] [20] [21] [22]. Taxonomies for environmental
sounds has been of particular interest in these works. Even in the
specific context of environmental sounds there is no clear consensus
on building such taxonomies [19]. Different approaches have been
applied in different cases and in most cases it is based on subjective
opinions. Moreover, in several of these urban taxonomies, a large
part of the taxonomy is made up of broad categories and the number
of low-level acoustic concepts is once again very small. This limits
their utility for both accumulating sound related knowledge as well
as for audio event and scene detection research. In this paper, we
take a step towards large scale understanding of sound by addressing
some of these issues. The motivation is to develop methods which
can automatically catalog sounds and generate other commonsense
knowledge about sounds. Although not a component of this paper,
this can definitely aid in audio event and scene detection tasks.

First, we try to address the problems of acoustic concept vo-
cabulary by proposing methods for automated discovery of potential
sound concepts by applying natural language processing and ma-
chine learning techniques on a large corpus of text. For automated
discovery of sound concepts we propose a simple yet effective un-
supervised approach based on part of speech (POS) patterns. We
follow up on this step by proposing a word embedding based super-
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vised method for classifying a given text phrase into sound phrase
(concept) or non sound phrase (non-sound concept). This supervised
method allows us to identify the notion of audibility in any given
text phrase. Acoustic relations such as acoustic scene- sound con-
cepts, sounds and sources are equally important for understanding
sounds. For acoustic relations, we propose a method for automat-
ically describing an acoustic scene or environment through sound
concepts. Sound concepts and acoustic scenes are related through
dependency paths and then an LSTM neural network [23] is used to
predict whether a sound concept is found in an acoustic scene or not.
Although, in this work we looked into the specific case of scene-
concept relations, our method can be extended to other forms of re-
lations as well, for example concept-source relations. Scene-concept
relations can be extremely helpful in creating sound ontologies. To
the best of our knowledge, this is the first work on text based under-
standing of sounds, leading to large scale acoustic knowledge. The
rest of the paper is as follows.

In Section 2 we describe our methods for discovering sound
concepts, in Section 3 we describe the dependency path and LSTM
based approach for scene-concept relations. We describe our subjec-
tive and objective evaluation for the proposed methods in Section 4
and finally we conclude in Section 5.

2. SOUND CONCEPTS
Automated discovery of text phrases which can be designated as
sound concepts is a very difficult problem. First, whether a text
phrase has a notion of sound or audibility in it can be very subjective
and dependent on the context in which it is used. There are unigram
and bigram phrases such as music, laughter, glass breaking, woman
screaming etc. which on its own gives an impression of sound or
audibility in it. However, in several cases a direct belief of sound
might not be apparent from the text phrase on its own but it is ei-
ther a source of or is directly related to salient acoustic phenomena
which is well understood in commonsense human knowledge. Ex-
amples include phrases such as helicopter, birds, dog, car engine
. These acoustic concepts appear in several audio event databases
and it is expected to have capabilities to detect these events. Hence,
any large list of sound concepts should include such phrases. Auto-
mated discovery of sound concepts (phrases) becomes difficult due
to this subjective and contextual way of expressing sound concepts.
We propose a simple yet very effective method of obtaining “audi-
ble” text phrases or sound concepts from large text corpora. We also
propose a supervised method of classifying a given text phrase as
sound concept or non-sound concept by incorporating syntactic and
semantic content of phrase through word embeddings.

2.1. Unsupervised Sound Concept Discovery
We introduce an unsupervised method for discovering sound con-
cepts in text. Our method is based on the idea that there are patterns
in specific forms that are primarily used to express sound concepts
in language. These patterns can help in identifying sound concepts.

We begin with a single pattern: “sound(s) of <Y>” where Y is
any phrase, we allow Y to be up to 4 words long. We then look for
occurrences of the pattern in a large corpus. In our experiments, we
used the English part of ClueWeb092 From this we obtain a large
collection of occurrences such as: “sound of honking cars”, “sound
of gunshots”.

However, this step produces a significant amount of noise. We
therefore treat its output as candidate sound concepts and introduce a
minimally-supervised method for pruning noise from this collection.
First, we generalize candidate concepts by replacing mentions with

2http://lemurproject.org/clueweb09/

Pattern Example Concept
P1 <X> of (DT) VBG NN(S) honking cars
P2 <X> of VBG yelling
P3 <X> of (DT) NN(S) VBG dogs barking
P4 <X> of (DT) NN(S) gunshots
P5 <X> of (DT) NN NN(S) string quartet
P6 <X> of (DT) JJ NN(S) classical music

Table 1. Patterns for discovering sound concepts in text. V BG is
the part of speech tag for verbs in the gerund form, NN for singular
nouns (S means plular), DT for determiners, and JJ for adjectives.
their part of speech tags, as follows:

sound of honking cars = sound of VBG NN
sound of gunshots = sound of NNS

where the part of speech (POS) tag V BG denotes verbs in the
gerund form, NN , and NNS denote singular and plural nouns,
respectively 3. The POS generalized concepts reduce the data size
to about only 20 unique patterns. Since the POS patterns are so few,
we can use them to filter out noisy concepts with little effort. The
key to filtering is that not all POS patterns express valid concepts.
We can eliminate all but 6 of the POS patterns. For example, the
pattern “sound of JJ (adjective)” does not express sound concepts.
All candidate concepts that match the 6 valid POS patterns are re-
tained and the rest are discarded. The full list of valid POS patterns
with examples is shown in Table 1. The patterns in Table 1 produced
a total of 116, 729 unique sound mentions from the corpus.
2.2. Supervised Classification
The unsupervised discovery of sound phrases (concepts) in the pre-
vious section can still contain non-sound phrases. A few examples
of such phrases which are clearly not sound concepts but do not get
filtered out by the two step process in the previous section are some-
one being (NN VBG), price dropping (NN VBG), gaining experience
(VBG NN), happy hunters (JJ NNS). Hence, to improve upon the un-
supervised discovery of potential sound concepts, we propose a su-
pervised method for classifying a text phrase as sound phrase (sound
concept) or non sound phrase (non sound concept).

Since bigram phrases are the most dominant and expressive set
of sound concepts discovered by the unsupervised method, we fo-
cus specifically on bigram phrases. A set of labeled data is required
for supervised training of classifiers for text phrase classification. To
obtain a completely reliable set of labeled data, we manually inspect
a small subset of the sound concepts obtained in the previous sec-
tion and mark if it is actually a sound concept or not. Note that, in
the unsupervised case only 6 POS patterns express valid sound con-
cepts. We use the rest of the POS patterns to create a list of negative
examples. We manually inspect and label a small subset of this list
as well. Finally, we end up with a total of ∼ 6000, sound concept
and non-sound concept phrases.

The text phrases need to be appropriately represented by fea-
tures on which classifiers can be trained. Word Embeddings have
been found to be very effective in capturing syntactic and seman-
tic similarity between words [24–26] and have shown remarkable
success in a variety of semantic tasks [27]. Word embeddings map
words into a fixed dimensional vector representation. In this work
we use word2vec [24] to obtain vector representation for words in
text phrases. We use Google News pre-trained embeddings 4 to
represent each word by 300 dimensional vectors. We then use two

3POS Abbreviations: https://www.ling.upenn.edu/
courses/Fall 2003/ling001/penn treebank pos.html

4 https://code.google.com/archive/p/word2vec/
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Table 2. 36 Acoustic environments used in experiments
Acoustic Environments

1 Office Farm House Bus
2 Parties Funeral Library Park
3 Street Parking Lot Church Train
4 Airplane Wedding Cafe Cities
5 Campus Ballgame Bathroom Classroom
6 Train Station School Parks Bar
7 Grocery Store Trucks Forest Restaurant
8 Subway Airport Arena Construction
9 Beach Garden Stadium Ranch

methods for representing each bigram phrase. In the first case, we
take the average of the word2vec representation for each word to rep-
resent the whole phrase. This representation is referred to as AWV.
In the second case, we concatenate the vectors (CWV) for each word
to obtain a 600 dimensional vector for each phrase. These vectors
can then be used for training any classifier such as Support Vector
Machine (SVM) to build a sound vs non-sound phrase classifier.

3. ACOUSTIC RELATIONS
In this section we describe an approach to learn relationships in the
domain of acoustic world or acoustic relations. Acoustic relations
can be of different forms such as acoustic scene - concepts relations:
sound concepts found in an acoustic scene, source-sound relations:
source of the corresponding sound, co-occurrence relations: sounds
which often occur together. In this paper we focus specifically on
scene-concept relations where our goal is to describe an acoustic
scene or environment by a set of sounds which occur in that scene
or environment. Information in the form of what types of sounds
make up a scene can be extremely helpful in audio scene recognition
tasks1. Moreover, these relations also provide co-occurrence infor-
mation about sound concepts. For example, laughing and cheering
often occur together in several acoustic environment. These addi-
tional information about sound concepts can be exploited in a va-
riety of applications. From the perspective of semantic analysis in
text, we cast this task as a relation classification problem.

First we find all sentences in the ClueWeb corpus that mention at
least one of the 116, 729 sound concepts discovered in Section 2, and
at least one acoustic environment such as “beach”, “park”, etc. In our
experiments, we worked with a total of 36 acoustic environments
which we define in Table 2, but our method is generic and can work
with any number of environments. Most of acoustic scenes from
DCASE 1 scene classification challenge are part of our setup as well.
We then apply a dependency parser5 to any sentence that mentions
a sound concept and an acoustic environment. This step produces
dependencies that form a directed graph, with words being nodes and
dependencies being edges. For example, the sentence: “The park
was filled with the sound of children playing” , yields the following
dependencies:

det(park-2, The-1)
nsubjpass(filled-4, park-2)
auxpass(filled-4, was-3)
root(ROOT-0, filled-4)
det(sound-7, the-6)
nsubj(playing-10, sound-7)
prep of(sound-7, children-9)
prepc with(filled-4, playing-10)’

The details of the dependency relations can be found in [28].
Next, we traverse the dependency graph in order to obtain the path

5https://pypi.python.org/pypi/practnlptools/1.0

Table 3. Example Paths for Positive Training Data
prep along() prep of() sound nsubjpass() heard prep in()

prep of() nsubjpass() filled prep with() sound prep of()
prep of() sound prep on() conj and() sounds prep of()

prep with() sounds prep of() prep of() sound prep to()
nsubj() alive prep with() sound prep of() prep upon()

prep of() sounds prep from() prep of() sounds prep on()
prep of() sound nsubj() came prep from() prep of() sounds prep at()

Table 4. Example Paths for Negative Training Data
conj and() amod()

poss() nn()
nn() sound prep of() prep through()

prep of() appos()
det() conj and() sound prep of()

prep to() prep of() sound nsubj() filled dobj()

between the mention of a sound concept, in this case “children play-
ing”, and the mention of the acoustic environment “park”. Short-
est paths between entities have been found to be a good indicator
of relationships between entities [29, 30]. We therefore extract the
shortest path. In our example, the shortest path labeled with edge
and node names is as follows: “nsubjpass() filled prepc with() sound
prep of()”.

3.1. Training Data
Given the paths, we would like to classify scene-sound pairs into
those that express the relationship of interest (SoundFoundInEnvi-
ronment) and those that do not. Classifier training would require
labeled training data.

To obtain training data, we proceed as follows: We sort the paths
by frequency, that is, how often we have seen the path occur with dif-
ferent scene-sound pairs. Among the most frequent paths, we label
the paths yes or no, depending on whether they express the relation-
ship of interest. This gives us a way to generate positive and negative
examples using the labeled paths. Examples of paths that generate
positive training data are shown in Table 3. Examples of paths that
generate negative training data are shown in Table 4.

3.2. Classification
We use an LSTM recurrent neural network to learn the scene-sound
relationship. Each word w is mapped to a d-dimensional vector
vw ∈ Rd through an embedding matrix E ∈ R|V |×d, where |V |
is the vocabulary size, and each row corresponds to a vector of a
word. We initialize the word embeddings with the 300-dimensional
Google News pre-trained embeddings4. For the dependency relation
names “amod()”, since they do not have entries in the pre-trained
embedding matrix, we randomly initialize their vector embeddings,
and learn them during training.
Path Encoding. To encode the shortest path between a sound con-
cept and an acoustic scene, we use an LSTM recurrent neural net-
works (RNN) which is capable of learning long range dependencies.
While regular RNNs can also learn long dependencies, they tend
be biased towards recent inputs in the sequence. LSTMs tackle this
limitation with a memory cell and an adaptive gating mechanism that
controls how much of the input to give to the memory cell, and the
how much of the previous state to forget [23].

We have a path: p = p1, ...,pp ∈ Rd and an associated path
matrix P ∈ Rp×d, where each row corresponds to the embedding
vector of the word in that position.
The LSTM mention encoder generates the path encoding, vp, as
follows:

hi = LSTM(vpi ,hi−1, ci−1), i = 1, . . . , p (1)
vp = hi : i = p
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Table 5. Analysis of Unsupervised Sound Concept Discovery
Pattern # Concept + in Top 100 Freq.

P1 <X> of (DT) VBG NN(S) 9335 98
P2 <X> of VBG 1395 71
P3 <X> of (DT) NN(S) VBG 19194 91
P4 <X> of (DT) NN(S) 20064 59
P5 <X> of (DT) NN NN(S) 26473 93
P6 <X> of (DT) JJ NN(S) 40268 49

The LSTM encodes the word at timestep i = t in the path using
the word embedding vector vpt , the previous output ht−1, and the
previous state of the LSTM cell ct−1. The output ht is computed
using the four main elements in the LSTM cell: an input gate it,
a forget gate ft, an output gate ot, a memory cell ct with a self-
recurrent connection. The cell takes as input a d-dimensional input
vector for word xt = pi, the previous hidden state ht−1, and the
memory cell ct−1. It calculates the new vectors using the following
equations:

it = σ (Wxixt +Uhiht−1 + bi) , (2)
ft = σ (Wxfxt +Uhfht−1 + bf ) ,

ot = σ (Wxoxt +Uhoht−1 + bo) ,

ut = tanh (Wxuxt +Uhuht−1 + bu) ,

ct = it�ut + ft�ct−1,

ht = ot� tanh(ct),

where σ is the sigmoid function, � is element-wise multiplication,
the W and U parameters are weight matrices, and the b parameters
are bias vectors.
Prediction. From path encoding vp, we compute the output of the
neural network, a distribution over the positive and negative labels.
The output for each path is decoded by a linear layer and a softmax
layer into probabilities over the two labels. Therefore, the prediction
dr

dr = softmax(Wr · vp) (3)

where softmax(zi) = ezi/
∑

j e
zj .

4. ANALYSIS AND EVALUATION
In this Section we analyze and evaluate our proposed methods. The
complete list of sound concepts discovered by our method is avail-
able on this [31] webpage. We had six unique POS patterns for filter-
ing candidate sound concepts. The total number of sound concepts
corresponding to each POS pattern is shown in Table 5. Since, the
total number of sound concepts discovered is fairly large, manually
inspecting it to identify actual sound concepts among the discovered
ones is very difficult. For each concept discovered by our method
we maintain a count of total number of times that sound concept oc-
curred in the text corpus. We select the Top 100 for manual inspec-
tion and identify concepts which can actually be labeled as a sound
concept. We do it for each POS pattern. The number of positive
(+) hits in this Top 100 most frequent concepts is shown in Table 5.
We note that 3 POS pattern have more than 90 positives. The lowest
is for <JJ NN(S) >. However, note that the frequency of occur-
rence of a discovered concept has nothing to do with it being truly
a sound concept. Discovered concepts such as sobbing voices, siren
breaking, cheering crewmen contain an impression of sound and are
positive examples of sound concepts but occur very few times in the
text corpus. Hence, the purpose of column 2 in Table 5 is to show
how well our method did on phrases which occurred frequently in
our process.

As described in Section 2.2, we created a list of sound concepts
(positive) and non-sound concepts (negative) bigram phrases. The

Table 6. Accuracy of Supervised Classification
Fold 1 Fold 2 Fold 3 Fold 4 Avg

AWV 87.03 89.05 87.84 89.77 88.42
CWV 90.00 89.32 91.87 90.30 90.37

Table 7. Examples of Environment (Scene)-sounds relations discov-
ered by our method

Environment Sounds
Forest Birds Singing, Breaking Twigs, Cooing, Falling Water
Restaurant Jazz, Laughter, People Talking, Music Drifting
Airport Planes Flying, Plane Engines, Aircraft, Intercoms
Park Laughing, Police Siren, Birds Chirping, Footsteps
Ranch Horses, Gunfire, Tapping Water, Bulldozers
Church Children Laughing, Church Bells, Singing, Applause
Beach Waves Crashing, Waves Lapping, Surf Hitting
Construction Hammering, Jackhammers, Engines, Blasting
Street Sirens, Men Shouting, Honking Cars, Cheering
Bar Piano Playing, Laughter, Clinking Glasses, Cheering

total number of positive examples is 3189 and total number of neg-
ative examples is 2758. We randomly divide this data into 4 folds.
3 folds are used for training and then the trained model is tested on
left out fold. The experiment is done all 4 ways. Linear SVMs are
trained on both AWV features and CWV features. The accuracies
for both feature representation are shown in Table 6. Concatenated
word2vec features gives slightly better performance compared to av-
eraged word2vec features. An average accuracy of more than 90% is
achieved which shows that our supervised classifier is highly reliable
in classifying a text phrase as sound or non-sound phrase.

Table 7 shows a few examples of scene-concept relations found
by the system. Some unusual findings are Rifle Shots in Library,
Chirping Birds in Library. The full list of sound concepts discov-
ered for each acoustic scene or environment is available on this [31]
webpage. A subjective analysis of all discovered relations shows that
for most of the relations discovered are meaningful in the sense that
the sound concept is actually found in that acoustic environment.

5. CONCLUSIONS
In this paper we presented methods for text based understanding of
sounds and acoustic relations. We proposed a method for automated
discovery of sound concepts using a large text corpus. It discovered
over 100, 000 sound concepts and to the best of our knowledge no
such other exhaustive list of sound concepts exists in current litera-
ture. We found among the discovered concepts, those corresponding
to POS patterns in form of<VBG NN(S)>and<NN(S) VBG>are
in general very reliable. This is clearly expected as a large number
of sounds are related to its sources through some action. We also
proposed a simple word embedding based method for learning su-
pervised classification of text phrases in sound or non-sound phrases
(concepts). This supervised method achieved an accuracy of over
90%. Although, the total number of examples considered in super-
vised classification experiments is not very large (∼ 6000), it does
validate our proposed word embedding based approach. An impor-
tant aspect of any knowledge base about sounds would be to relate
different sounds. In this work we took on the specific case of scene-
concept relations where we try to find out the sound concepts which
may occur in an acoustic scene or environment. This is helpful in
defining an acoustic scene by the sounds which occur in that scene
and hence can be exploited in acoustic scene recognition tasks. Other
meta level inferences can also be drawn from such acoustic relations.
We continue to investigate into methods for discovering other sound
related knowledge using text.
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