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ABSTRACT 

 
This paper introduces the use of local binary patterns (LBP) 
extracted from a time-frequency representation (TFR) for 
acoustic scene classification. As LBP provides a description 
of the global TFR texture we propose a novel zoning 
mechanism that provides a simple solution to extract 
spectrally relevant local features which better characterize 
the audio TFRs. To further improve the classification 
performance, we perform feature and score level fusion of 
the proposed LBP (with zoning) with histogram of gradients 
(HOG) of the TFR images. Our technique demonstrates an 
improved performance by achieving a classification 
accuracy of 95.2% using a fusion of time-frequency derived 
features. 
 

Index Terms— acoustic scene, local binary patterns, 
feature extraction, time-frequency analysis, fusion 
 

1. INTRODUCTION 
 
For the past two decades, there has been much interest in 
research related to acoustic scene classification (ASC) due 
to its significance in various emerging applications such as 
automatic audio surveillance, robotics sensing, multimedia 
content analysis and machine listening. The objective of 
acoustic scene classification is to recognize the environment 
in which an audio stream has been produced.	 The 
importance of machine listening has been highlighted by 
Stowell et al. [1] and suggests that intelligent machine 
listening should have the capability to automatically 
recognize the scene based on the acoustic information.  

Early research on ASC widely used speech perceptual 
features based on the human auditory system. The 
pioneering work on acoustics scene classification by 
Sawhney and Maes used power spectral density and 
Gammatone filterbank analysis which mimic the response of 
the human cochlea [2]. In the IEEE AASP Challenge on 
Detection and Classification of Acoustic Scenes and Events 
(DCASE) for acoustic scene classification [1][3], the Mel-
frequency cepstral coefficient (MFCC) was a popular choice 
for feature extraction. Other acoustic features such as zero 

crossing rate, frequency-band energy, spectral centroid, 
Mel-scaled filter-bank coefficients and Gabor representation 
have also been explored for ASC [4][5][6]. In addition to 
acoustic features, Heittola et al. [7] suggested the use of 
event histograms for scene classification. These features are 
used in conjunction with different machine learning 
methods such as support vector machines (SVM), Gaussian 
mixture models (GMM) and random forests to capture and 
classify the temporal and spectral variations that constitute a 
scene [3]. The best reported work to date is that of Bisot et 
al. [8] who used unsupervised learning with non-negative 
matrix factorization. Their reported F1-score was 95.6% 
using the kernel extension for Principal Component 
Analysis (PCA), which is the best classification result on the 
LITIS Rouen dataset. 

As an alternative approach, Rakotomamonjy and Gasso 
[9] applied techniques from image processing to acoustic 
scene analysis. Audio signals were first converted to a TFR 
from which HOG features were extracted [9]. Dealing with 
the non-stationarity of acoustic signals is a known issue in 
acoustic scene classification. Rakotomamonjy and Gasso 
addressed this by pooling HOG features to obtain 
histograms that are able to capture and preserve the 
information of the time-frequency structures which better 
characterize an audio TFR.  

In this work we investigate LBP as features we can 
extract from the TFR image. The LBP is highly 
discriminative for texture patterns and computationally 
efficient [10]. LBP provides a global representation, 
however for scene classification tasks, a localized view is 
more important and to address this we propose a novel 
zoning mechanism for LBP. By zoning the TFR into non-
overlapping uniform slices we extract local information 
which better highlight distinctive spectral regions of the 
scene. These local LBP histograms in each zone are 
extracted and concatenated to form an enhanced LBP 
feature vector. As the LBP features with zoning provides 
complementary information to HOG features with pooling 
we present the results from a simple feature and score level 
fusion of the LBP and HOG features. We then extend this to 
a multiresolution LBP analysis which when fused with HOG 
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features provides one of the best performing results on the 
LITIS Rouen dataset. 

The remainder of the paper is organized as follows: 
Section 2 explains the proposed framework, Section 3 
describes the experimental setup, result and analysis and we 
provided our conclusions in Section 4. 
 

2. THE PROPOSED FRAMEWORK 
 

Our proposed framework uses a time-frequency 
representation of the acoustic signals for feature extraction. 
Figure 1 illustrates the conceptual framework for the 
proposed system. The audio signals are converted to a log 
scale time-frequency representation using the Constant-Q 
Transform (CQT). Considering the CQT time-frequency 
representation as a texture pattern, we have chosen the LBP 
operator for feature extraction. In this work, we provide 
details of our novel TFR zoning mechanism for LBP 
features. The LBP histograms in each zone are extracted and 
concatenated to form an enhanced LBP feature vector. A 
multiresolution LBP texture analysis has been introduced 
into the proposed zoning mechanism to provide fine-grained 
analysis of the TFR texture patterns. The multiresolution 
LBP features are then fused with HOG features. 
 
2.1. Time Frequency Representation (TFR) 
 
The time frequency representations are computed using the 
CQT. The CQT transforms a time-domain acoustic signal 
into the time-frequency domain and provides a log scale 
frequency resolution that is approximately similar to 
auditory perception providing a finer resolution at lower 
frequencies. The CQT transform is computed by means of 
the Constant-Q transform [11] toolbox. The CQT TFR is 
resized to 512	×	512 using bicubic interpolation which based 
on [9] to obtain a uniform size of the TFR independent of 
the signal length, sampling frequency and CQT parameters. 
Table 1 shows the CQT parameters used to compute the 
TFR. 

 
2.2. LBP features 
 
LBP is a state-of-the-art feature extraction method for 
analyzing image textures [10] due to its robustness to 
grayscale variation and computational simplicity. The CQT 
TFR patterns represent image textures suitable for applying 
LBP feature extraction to acoustic scene analysis.  
 
 

 
Figure 1: Conceptual framework of the proposed system 

 
As given by Eq.  (1): 

LBPP,R =  s 𝑔#,% − 𝑔' 2
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where: 
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LBP considers each pixel of an image and is calculated by 
comparing the grayscale value of each central pixel, 𝑔', 
with the grayscale value of its 𝑃 neighboring pixels, 𝑔#,% for 
𝑝 = 0,1, … 𝑃 − 1, where  R, is the radial distance between 
the central pixel and each neighboring pixel. The LBP 
feature provides a P-bit binary encoding of the neighboring 
pixels whose grayscale value 𝑔# is larger than the central 
pixel, 𝑔'. The results are returned as the local binary pattern 
histogram as shown by Figure 1. 

LBP extensions such as multiresolution analysis can 
further enhance the LBP operator performance [12] to 
provide fine-grained analysis. We present a straightforward 
method for combining operators of different spatial 
resolutions. In this multiresolution analysis, two resolutions 
are considered. We performed preliminary experiments by 
varying the values of P and R. We chose the two best 
performing common (P, R) pair values for a uniform LBP of 
(8,1) and (12,2). These uniform LBP feature analyses for 
each scene yields 59 dimensions for LBP8,1 and 135 
dimension for LBP12,2.  
 
2.3. Zoning  
 
From our analysis of the CQT TFR, we have noticed that the 
texture patterns are not uniform. Therefore, the use of a 
‘global’ LBP may not sufficiently represent the local non-
uniformity. For LBP it is important to capture and properly 
preserve local features. Analyzing the TFR as a global 
feature will average out the distinctive regions of the TFR. 
The underlying idea of our proposed solution is to identify 
local features pertinent to the relevant spectral information. 
In Figure 2 we notice that at low frequencies the textures are 
quite similar but they change as the frequency increases.  
 

Table 1: CQT parameter 
Q factor, Q = 1 

Sampling frequency, Fs 22050 Hz 

Bins per Octave, B 8 
Maximum frequency, Fmax 10000 Hz 
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We also observe that, for example, the high-speed train and 
café scenes, the textures at frequencies < 30 Hz are 
indistinguishable. However, the textures between 30 Hz and 
460 Hz for the high-speed train (a), (b) are similar and quite 
different from the distinctive textures between 60 Hz to 
7711Hz for café (a), (b). 
 

 
High-speed train (a) 

 
High-speed train (b) 

 
café (a) 

 
café(b) 

Figure 2: CQT representation for acoustic scenes with linear 
zoning 

 
To address this, we propose a zoning technique to obtain the 
local information of a given pattern by dividing the TFR 
into a number of zones, n, to be analyzed locally as shown 
in Figure 3. The zoning size, z is dependent on the TFR 
height, h and the number of zones, n and is given by z= h n.  
The number of zones, n, was varied empirically to get the 
best result. In our work we found n= 10 and n=15 provide 
the optimal number of zones for the (8,1) and (12,2) 
resolutions respectively. 
 

 
Figure 3: A Linear zoning mechanism is used to extract local 

information 

Let Xn represent the CQT pixels in the nth zone which is a 
 z × 512 image, where h = 512 and z =	512/n. We carry out 
an independent LBP on Xn by using Eq. (1) followed by 
concatenation to form an enhanced LBP feature vector as 

below: 

LBPenhanced = [LBPX1 LBPX2 	⋯ LBPXn]																		(2)                      

From Eq. (2) the number of dimensions was increased by a 
factor of n.  

Our proposed zoning is similar to the pooling of HOG 
used by [9] and was first introduced using LBP features for 
music genre classification in [13]. In that work a Mel-spaced 
zoning mechanism was used with short-time Fourier 
transform features and only provided a 3% improvement in 
performance. 

 
2.4. Fusion 
 
Fusion is a common method for improving recognition rates 
when features are complementary. The LBP and HOG 
features emphasize different characteristics of the TFR. LBP 
deals with pixel intensity and texture, and provides the 
uniform pattern representation of the CQT. Whereas, HOG 
deals with the distribution of gradients at different 
orientations making it more suitable to deal with random 
textures. We fused the multiresolution LBP and HOG 
features to complement the different textures of the CQT 
pattern by both feature level fusion and score level fusion. 
The HOG features have been obtained using the best 
performing features from [9]. For feature level fusion, we 
fuse the LBP and HOG features by concatenating the HOG 
directly with the LBP. For score level fusion, the decision is 
based on the sum rule [14]. An advantage of score level 
fusion is that it does not increase the dimensionality of the 
features as feature level fusion, but does require two 
separate classification systems. 
 

3. EXPERIMENTS 
 
3.1. Experimental setup 
 
Our experiments were evaluated on the LITIS Rouen dataset 
[9]. This is the largest well-known publicly available dataset 
for ASC. The dataset contains 3026 audio files of 19 scene 
classes with 30 seconds duration recordings for each scene 
example. For classification, the SVM classifier is 
implemented using the LIBSVM toolkit [21]. The “one-
against-one” approach for multiclass classification was used 
with a linear kernel. The dataset was divided into 80% of 
training scenes examples and 20% of test scenes over 20 
averaged random trials. We use accuracy and precision as 
the evaluation metrics. The evaluation is calculated for each 
class i, where {i = 1, 2, …, k} and k is the number of 
classes. The accuracy, A, is calculated as the number of total 
correct scenes, c, divided by the total number of test scenes, 
N. For the precision metric, the calculations are based on the 
confusion matrix: the rows provide the instances of the 
actual class and the columns are the instances of the 
predicted class. The precision, Pi, averaged over all classes, 
is defined as the number of correctly predicted scenes, ci, 
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divided by the sum of correctly predicted scenes, ci and the 
number of false positives, fp in the class. Accuracy and 
Precision are defined as below: 

Accuracy, A=
c
N
=

ci

N
   ; Precision,	Pi=

 ci

 (ci	+		fp) 
	 

 
3.2. Experimental result and analysis 
 
Several experiments were conducted to show the benefits of 
applying LBP features and the influence of the proposed 
zoning mechanism. As the baseline, we first evaluated the 
accuracy of LBP features of the global TFR without 
applying the zoning mechanism. Both the accuracy and 
precision are only 72% as it only considers one global 
feature and therefore some time-frequency information is 
lost. Then we apply zoning in order to summarize LBP local 
features while preserving relevant frequency information 
over the specified time. Table 2 presents the results obtained 
after empirically testing different numbers of TFR zoning 
and LBP parameters. From Table 2 it can be seen that the 
proposed zoning of the LBP features provided a significant 
improvement from 72% to 91.5% in accuracy and precision. 
Therefore, from the results obtained it can be observed that 
the zoning mechanism is instrumental in extracting more 
discriminative spectral detail for ASC.  

As different LBP resolutions provide complementary 
information, we carried out a multiresolution analysis by 
concatenating the LBP8,1 features with the LBP12,2 features. 
The multiresolution LBP performance in Table 3 yielded a 
1% improvement in accuracy compared to the single 
resolution LBP. This is because the original LBP features 
are calculated in a local 3	× 3 neighborhood and cannot 
capture large scale structures [10]. By combining 2 LBP 
operators, 2 different LBP codes are assigned to each pixel 
in the TFR. Joint distribution of these codes resulted in more 
accurate information of the acoustic scene. Our proposed 
method shows the result of better precision (92.7%) 
compared to [9]. However this does come at the cost of a 
doubling in the feature dimension. 

In Figure 4 we show the accuracy of the feature fusion 
of multiresolution of LBP with HOG compared to HOG and 
LBP only for the individual scenes. From Figure 4 the 
individual features had difficulties in discriminating scenes 
such as café, metro-Paris and pedestrian street. It was 
reported in [9] that the HOG feature was not able to totally 
capture the fine-grained discriminative features between 
some scenes which are difficult to distinguish such as 
metro-Paris, metro-Rouen, quiet street and pedestrian street. 
However, with the fusion of LBP with HOG, the accuracy 
for each scene class has been significantly improved. It is 
well known that HOG is excellent at capturing edges and 
corners in images. On the other hand, LBP is better at 
capturing the local patterns. As HOG and LBP emphasize 
different capabilities in image analysis, critical for ASC, this 
explains the successful fusion of these features in providing 

complementary information able to boost performance by 
up to 3% over LBP and HOG alone. 

 
Table 2: Classification result of linear zoning 

Features 
Linear Zoning 

# zone Dimension Accuracy 
(%) 

Precision 
(%) 

LBP8,1 15 880 91.5 91.5 
LBP12,2 10 1350 90.5 90.4 
HOG  1536 91.9 91.8 

 

 
Figure 4: Accuracy result for each scene classes 

 
The comparison of results between the application of 

feature level fusion and score level fusion is shown in Table 
3. Simple concatenation of feature level fusion provides 
better results compared to the sum rule for score level 
fusion. The best accuracy and precision obtained is 95.2% 
and 95.1% respectively. These results are superior to the 
results reported by using HOG features alone [9] and 
comparable with the work in [8] using kernel non-negative 
matrix factorization over a sequence of CQT time slices.  
 

Table 3: Result for features fusion 

Features 
Feature Level Fusion Score Level Fusion 
Accuracy 

(%) 
Precision 

(%) 
Accuracy 

(%) 
Precision 

(%) 
LBP8,1+ 
LBP12,2 

92.9 92.7 92.4 92.4 

LBP8,1 + 
LBP12,2 + HOG 95.2 95.1 94.9 94.9 

 
4. CONCLUSION 

 
This work has demonstrated the capability of LBP for time-
frequency analysis for acoustic scene classification and the 
state of the art performance using time-frequency 
representations. To increase the classification accuracy, 
linear zoning and multiresolution LBP was introduced for 
more localized features. Furthermore, fusion with HOG 
features has provided the comparable reported result for 
ASC using time-frequency representations. In future we will 
consider other time-frequency representations and image-
based visualization features.  
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