
BAYESIAN BLIND DECONVOLUTION WITH APPLICATION TO ACOUSTIC FEEDBACK
PATH MODELING

Ritwik Giri

Starkey Hearing Technologies
ritwik giri@starkey.com

Tao Zhang

Starkey Hearing Technologies
tao zhang@starkey.com

ABSTRACT

Acoustic Feedback Path in a digital hearing aid is not only affected
by the user’s head and ear, but also by different acoustic environ-
ments. But some of these effects are common for a specific style of
hearing aid and individual ear, i.e., this part will be invariant to the
different acoustic environments and can be interpreted as the effects
associated with that specific hearing aid and ear characteristics. In
this article we propose a novel Bayesian Blind Deconvolution ap-
proach with exponentially decaying kernel and show its application
in extracting the invariant part of the feedback path measurements
of a digital hearing aid. Efficacy of our proposed approach in ex-
tracting the invariant part has been measured by using the extracted
invariant part to model unseen test Feedback Path (FBP) measured
from the same hearing aid but in a different acoustic environment,
over existing methods.

Index Terms— Feedback Paths (FBP), Acoustic Feedback Can-
cellation (AFC), Blind Deconvolution, Empirical Bayes

1. INTRODUCTION

Acoustic Feedback in digital hearing aids usually occurs because of
the coupling between the receiver, i.e., the speaker and the hearing
aid microphone, which can result in severe distortion of the desired
sound and lead to loud whistling sounds [1]. It has become one of
the most common problems associated with the current generation
of open fitting digital hearing aids and requires effective strategies to
prevent the howling sounds [2].

Among different solutions, recent literatures [3, 4, 5] indicate
that the Feedback Cancellation (FBC) algorithms have been partic-
ularly successful to counter this problem. FBC algorithms usually
estimate the feedback signal and remove it from the hearing aid mi-
crophone signal to make sure that only the desired speech signal is
amplified in the forward path. Acoustic feedback path is affected by
not only the response of user’s head and ear, but also by the acoustic
environment as well. Because of the dynamic nature of the acoustic
surrounding/ environment, Adaptive Feedback Cancellation (AFC)
approach has been proposed where the Impulse Response (IR) be-
tween the receiver and the hearing aid microphone is estimated us-
ing an adaptive filter [3]. In traditional AFC algorithms a Finite Im-
pulse Response (FIR) is used to model the adaptive feedback path.
This can often lead to a very long filter to model the FBP. It has
been shown in [6, 7] that the convergence speed and the computa-
tional complexity of the adaptive filter is determined by the number
of adaptive parameters, which makes the above mentioned approach
not so effective and motivates to look for solutions which involves
far less adaptive parameters to model the feedback path.

This motivated the recent line of work [8, 9, 10, 11], where it has
been proposed to model the acoustic feedback path as the convolu-
tion of two filters: a time invariant common part which corresponds
to the intrinsic properties of a specific hearing aid (transducer charac-
teristics [9]) and also individual ear characteristics [10], and a time-
varying variable part which enables us to model the dynamic nature
of the acoustic environment (e.g., caused by moving objects around
hearing aid [11]). Hence, in order to identify the common part and
the variant part from FBP measurements which are measured on a
multi-microphone hearing aid and also for different acoustic scenar-
ios, we need to solve a blind deconvolution problem. This modeling
approach results in a far shorter adaptive FIR for the time-varying
part, contributing to faster convergence and significant reduction in
computational load.

The variant part of a FBP can be modeled using finite number
of taps, i.e., FIR for an easy and stable adaptation over time using
standard adaptive filtering approaches. To model the common in-
variant part of the FBPs several different modeling techniques can
be found in the literature. In [9] authors proposed to model the in-
variant part using an all pole filter that corresponds to room reso-
nance whereas the variable part was modeled using an FIR leading
to popular common-acoustical-pole and zero (CPZ) model. They
also proposed an iterative least square search (ILSS) method which
does not make any assumption on the pole and zero structure. Their
findings showed that ILSS approach with the initialization of CPZ
estimate generally produces a useful and robust estimate of the com-
mon part. In [10] authors proposed to use a pole-zero filter for the
common part and used an Alternating Least Squares (ALS) method
to estimate the pole and zero locations of the invariant filter. This
approach was further extended in [11] by including a stability con-
straint on the estimated pole locations, and solving the optimization
problem using either a Quadratic Programming (QP) or a Semi Def-
inite Programming (SDP) software.

In this work, we consider the concerned blind deconvolution
problem in a Bayesian framework. Bayesian Blind Deconvolution
(BBD) [12] problem has been widely investigated in image process-
ing and computer vision community [13], for many relevant applica-
tions such as camera shake removal [14], spatially varying blur re-
moval [15] etc. Blind deconvolution problem in general is severely
ill-posed and may lead to trivial solution if no constraint is imposed
[12]. This is the case for ILSS [9], and hence this algorithm is very
sensitive to the initialization. In this work we introduce constraints
on the invariant part based on the prior knowledge to regularize the
solution space and lessen the sensitivity to the initialization of the
algorithm. Though in image processing applications sparsity con-
straint has been a relevant choice, for our problem it is not so fea-
sible, as it ignores the tail of the invariant part of FBP. Hence as
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prior information along with sparsity for initial few taps to model
any common delay and high nonzero filter coefficients, we also em-
ploy an exponentially decaying kernel to model the desired common
part of FBP. This specific prior has been exploited in our previous
work [16] before in a non-blind deconvolution problem of relative
impulse response estimation. In this work we extend our proposed
approach to the blind deconvolution case and employ an Empirical
Bayes based inference procedure to estimate the concerned filter co-
efficients.

The rest of the paper is organized as follows. In Section 2, we
present the problem of invariant part extraction from FBP measure-
ments. In Section 3, we present the model of our proposed BBD
framework, along with an Empirical Bayes based inference proce-
dure to estimate the filter coefficients. We present experimental re-
sults of the proposed algorithm and also other existing algorithms
using real FBP measurements in Section 4, and finally conclusions
and some future directions of this work are presented in Section 5.

2. PROBLEM FORMULATION

Let’s assume that L number of Feedback Paths (FBPs) have been
measured for the same hearing aid on the same ear but in different
acoustic scenarios, which can be denoted as bk[n] for, k = 1, ..., L.
Key assumption is that, these FBPs have an invariant part, i.e. a
fixed filter which accounts for the invariant properties of each mea-
surement such as, fixed transducer, fixed acoustical couplings and
individual characteristics of that particular ear, same for all L mea-
surements. Let f [n] and ek[n] denote the impulse response of the
invariant part and the variant part of the kth FBP bk[n] respectively.
Hence,

bk[n] = f [n] ? ek[n] (1)
In real life we will also consider that the measurement of FBP has
some additive noise which can also account for model uncertainty.

Hence,
bk[n] = f [n] ? ek[n] + ε[n] (2)

Estimating the invariant part f [n] from the true measurements
of L FBPs, bk[n], is the main goal of this article.

3. PROPOSED METHOD: BAYESIAN BLIND
DECONVOLUTION

Since blind deconvolution problem is fundamentally ill-posed and
infinite solutions are possible, some prior knowledge/ information is
required to obtain a meaningful solution. Previous work of incorpo-
rating pole and zero structure is one way to do that, but the problem
with that, is added concern to maintain stability (estimated pole loca-
tions) and also sensitivity to any measurement noise [9]. We propose
to use an Empirical Bayes based approach with a relevant prior dis-
tribution, incorporating sparsity and exponentially decaying kernel
to get a robust estimator of the common part of FBPs.

3.1. Model
Concerned deconvolution problem involves finding the common in-
variant part and then variant parts from L number of FBP measure-
ments (bk[n]), i.e.,

bk[n] = f [n] ? ek[n] + ε[n] for, k = 1, ...., L (3)

Here both f [n] and ek[n] are unknown and need to be estimated
from the true measurements of FBP, bk[n] of each length N ,

bk = [bk[0], ...., bk[N − 1]]T ∈ RN×1 (4)

Let’s assume that we can model f [n] using an FIR of length C
and each ek[n] using an FIR of length M, such thatM+C−1 ≤ N .

ek = [ek[0], ...., ek[M − 1]]T ∈ RM×1 (5)

f = [f [0], ...., f [C − 1]]T ∈ RC×1 (6)
We also need to truncate the true FBP measurements upto length

M + C − 1 for the estimation stage, i.e.,

btr
k = [bk[0], ...., bk[M + C − 2]]T ∈ RM+C−1×1 (7)

We can rewrite Equation (3) in matrix and vector product using
convolution matrix and appending all the truncated FBP measure-
ments bk

tr together in a long column as,

b = Ef + ε (8)
Where E is the tall stacked matrix of the convolution matrices

Ek ∈ RM+C−1×C constructed from ek, i.e.,

E = [E1;E2; ...EL] ∈ RL(M+C−1)×C (9)
and,

b = [btr
1
T
....btr

L
T

]T ∈ RL(M+C−1)×1 (10)
Now in our probabilistic framework we will assume that the mea-
surement noise is Gaussian with variance σ2, which leads to the fol-
lowing likelihood distribution,

p(b|f , e1, ..eL;σ2) ∼ N(Ef , σ2) (11)
If we assume that the non informative flat priors have been em-

ployed over both the common f and variant part ek. then the MAP
estimate of the unknown filters can be found by solving the follow-
ing non-linear optimization problem,

f̂ , êk = arg min ||b−Ef ||22 (12)
An Iterative Least Square approach has been used in [9] to solve

this non-linear problem by alternately estimating f and ek till con-
vergence. As indicated in [9] we will denote this method as ILSS
and use it as one of our baseline methods.

As discussed above, blind deconvolution problem is highly ill-
posed and there are infinite solutions possible for f and ek. This is
one of the main reasons why ILSS suffers from severe sensitivity to
initialization and often gets stuck to a local minima. To regularize
the problem and find a meaningful solution we need to incorporate
some prior information in our Bayesian framework by enforcing a
prior distribution on the unknown filter coefficients.

3.2. Prior Distribution

In image processing applications of blind deconvolution, sparsity
has been a popular regularization strategy to obtain meaningful solu-
tions. But for our problem in hand, sparsity assumption becomes too
restrictive to model decaying nature of FBPs and often ignores the
tail because of small coefficient values (close to zero). To counter
this problem we also employ an exponential decaying kernel to
model the tail along with sparsity inducing prior for initial few filter
coefficients and any common delay. The prior distribution over f is
proposed to follow:

p(f |γ, c1, c2) ∼ N(0,Γ) (13)

With:

Γ = diag
[
γ1, ..., γP , c1e

−c2 , ..., c1e
−c2m, ..., c1e

−c2M
]

(14)

Where:
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• γp corresponds to pth early tap

• c1e−c2m corresponds to mth tap out of the M exponentially
decaying kernel

γ = [γ1, ..., γP ], c1 and c2 can be interpreted as the hyperpa-
rameters of the model, which can be learned from the measurements
using an Evidence Maximization approach [17]. Details of this in-
ference procedure will be discussed in the next subsection.

It is not straight forward to see from the above mentioned prior
distribution p(fi|γi) = N(fi; 0, γi) for, i = 1...P , how the spar-
sity is enforced on the initial few taps of f , because the hierarchical
nature of the prior disguises its character. To expand on this, let’s as-
sume that an Inverse Gamma (IG(α, β)) distribution has been used
as the prior over hyperparameters. To find the ”true” nature of the
prior p(fi), we integrate out the γi and the marginal is obtained as,

p(fi) =

∫
p(fi|γi)p(γi)dγi =

βαΓ(α+ 0.5)

(2π)0.5Γ(α)

(
β +

f2
i

2

)−(α+0.5)

(15)
This marginal distributions, ”true” representation of the behav-

ior of the prior of initial P taps of the common part corresponds to a
Student’s t-distribution, which is a super Gaussian density (has heav-
ier tails than Gaussian) and has been very popular in sparse recovery
literatures because of its ability to promote sparsity [17]. In Figure 1
we present the pdfs of a student’s t distribution with degrees of free-
dom (β) = 0.1, and a Gaussian distribution to show why a student’s
distribution is suited to promote sparsity. Moreover for our case
where a uniform hyperprior p(γi) has been used (i.e. α = β = 0),
p(fi) ∝ 1

|fi|
becomes an improper Jeffrey’s prior, which has infinite

probability mass at origin.

Fig. 1. Tail Behavior: Student’s t vs Gaussian

Since the variant part ek will be adapted during the Feedback
Cancellation stage, we employ a non-informative flat prior on p(ek)
and proceed to the inference stage.

3.3. Inference using Empirical Bayes

It has been shown in [18] that enforcing relevant prior distribution
may not be enough to deal with the ill posed nature of the blind
deconvolution problem, and discusses that the inference strategy to
estimate the concerned parameters, should also be chosen with cau-
tion.

Straight forward estimation approach is to look for the Maxi-
mum a posteriori (MAP) estimate for both the common part f and
the variant part e simultaneously, i.e. MAPf ,e estimate,

f̂ , ê = arg max p(f , e|b) (16)

But it has been shown in [12] that there are many problems with this
simultaneous MAP estimation approach. One major problem is the

presence of many suboptimal local minima which leads to conver-
gence issues and hence sensitivity to initialization. To mitigate some
of these issues, as suggested in [12] we will also use an Empirical
Bayes based inference procedure also known as Type II/ Evidence
maximization for a well conditioned estimate of the common part, f .

We proceed by employing an EM algorithm for inference
and treat ek as parameters and f as the hidden random vari-
able. In the E step we need to compute the concerned posterior,
p(f |b;E,γ, c1, c2). Because of the Gaussian nature of the both
likelihood and prior, this step leads to the following Gaussian poste-
rior,

p(f |b;E,γ, c1, c2) = N(f ;µ,Σ) (17)
Where the mean and covariance are,

f̂ = µ = σ−2ΣETb (18)

Σ = (σ−2ETE + Γ−1)−1 (19)
Note that E is the stacked convolution matrix following Equa-

tion (9). We use the result from the E step to compute the Q function,
which is essentially the conditional expectation of the complete data
log likelihood with respect to the concerned posterior given in (17).

Q(ek,γ, c1, c2)

= Ef |b;γt,ct1,c
t
2,σ

2,ek
[log(p(b|f ;E, σ2)p(f |γ, c1, c2))]

(20)

In the Q function expression we will need the following condi-
tional expectation,

< f2
i >= Ef |b;γt,ct1,c

t
2,σ

2,ek
[f2
i ] = Σ(i,i) + µ2

i (21)

where Σ(i,i) is the ith diagonal element of Σ.
Now in the M step we will maximize the given Q function with

respect to ek, c1, c2, and γ,.

êk, γ̂, ĉ1, ĉ2 = arg max
ek,γ,c1,c2

Q(ek,γ, c1, c2) (22)

After maximizing the Q function we get the following update rules,

γp = Σ(p,p) + µ2
p for p = 1 . . . P (23)

c1 =
1

M

M∑
m=1

ec2m < f2
m+P > (24)

M∑
m=1

mec2m < f2
m+P > −c1

M(M + 1)

2
= 0 (25)

êk = arg min
ek
||btrk − F̂ek||2 +

∑
i

wie
2
k,i (26)

Where, wi =
∑
j Σi+j,i+j .

Note that the convolution matrix E in the update of f in Equation
(18) will be constructed from the most recent estimates of the vari-
ant part. Similarly when we update the variant parts ek using (26),
we construct the convolution matrix F̂ using the recent estimate of
f . We perform this EM based updates for few iterations until a con-
vergence criterion is satisfied. Unlike in [16] we do not learn the
noise variance σ2 in the M step. Instead following [12] an annealing
type strategy was employed where after every iteration we update
the noise variance, σ2 ← σ2/β, where β > 1 till it reaches a pre
specified minimum value (λmin). For all our experiments we have
used β = 1.08 and λmin = 1e−10. Intuition behind this annealing
strategy is that, during initial iterations a high value of σ2 prevents
the algorithm to get stuck to a local minima and as the iteration num-
ber grows, decreasing σ2, i.e., reducing the uncertainty will help our
algorithm to converge to the global minima.
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4. EXPERIMENTAL EVALUATION

4.1. Setup

Following the setup in [11], four training feedback paths were mea-
sured using a two microphone behind-the-ear hearing aid with open-
fitting ear-molds on a dummy head with ear canal diameter (d) = 7
mm and length (l) = 15 mm. To account for the variations in the
acoustic conditions a telephone receiver was placed in close distance
to the hearing aids for the two FBP measurements. For validating
purpose, one test FBP was measured in an unseen (to the algorithms)
acoustic scenario, where the dummy head was positioned close to a
wall. In Figure 2 we plot the four training FBPs that have been used
to extract the common part f̂ . In Figure 3 we present the test FBP
that has been measured by placing the dummy head near a wall. All
the FBPs were sampled using a 16 kHz sampling frequency and were
truncated to length, N=100. Extracted common part f̂ from training
FBPs is then used to model the unseen test FBP and the resulting
Normalized Mean Square Error (NMSE) is computed as a perfor-
mance metric.

Fig. 2. Training Feedback Paths

Fig. 3. Test Feedback Path: Wall

4.2. Existing Algorithms
We compare our proposed approach with following existing meth-
ods,

• CPZ: All pole model for the invariant part. [9]

• ALS: Pole Zero model for the invariant part, optimized us-
ing an Alternating Least Square (ALS) method and initialized
with CPZ pole locations. [10]

• W-ALS (QP): Pole Zero model for the invariant part which
has been estimated by minimizing weighted equation error
(using a Quadratic Programming approach) and a stability
constraint has been imposed for the estimated pole locations
[11]. Authors have also proposed an SDP based formulation
in [11], which has not been included here because of its high
computational load.

• ILSS: All zero invariant part, estimated using an Iterative
Least Square Search with the initialization of truncated CPZ
estimate. [9]

• BBD (proposed): Bayesian Blind Deconvolution method
with an exponential kernel, with the choice of P = C/2 and
with the initialization of truncated CPZ estimate.

4.3. Results
In Figure 4 we show the NMSE measures for different algorithms
with respect to the length of the variant part with a fixed C = 26.
For Pole zero (ALS and W-ALS) based methods, as no specific in-
struction was provided in the literatures on how to choose the num-
ber of poles and zeros, we evenly distribute them, i.e. C/2 poles
and C/2 zeros were used for all our experiments. As expected, in
Figure 4 we see that performance improves for all the algorithms as
the length of variant part (M ) increases, but our proposed approach
BBD produces best NMSE for all cases except when M = 10. In
Figure 5 we show the NMSE measures for different algorithms with
respect to increasing C but with fixed variant part length M = 15.
Again we notice that BBD produces the best NMSE for all cases.

Fig. 4. NMSE comparison with varying M

Fig. 5. NMSE comparison with varying C

5. CONCLUSION

In this article we have proposed a novel Bayesian Blind Deconvolu-
tion framework with exponentially decaying kernel and have shown
its efficacy in extracting the invariant part from a set of FBP mea-
surements in presence of different acoustic variabilities over other
existing approaches. Including this modeling approach for acoustic
feedback cancellation task will be considered in our future works.
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