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ABSTRACT

In room acoustics, under-modelled multichannel blind sys-

tem identification (BSI) aims to estimate the early part of the

room impulse responses (RIRs), and it can be widely used

in applications such as speaker localization, room geometry

identification and beamforming based speech dereverberation.

In this paper we extend our recent study on under-modelled

BSI from the time domain to the frequency domain, such that

the RIRs can be updated frame-wise and the efficiency of Fast

Fourier Transform (FFT) is exploited to reduce the computa-

tional complexity. Analogous to the cross-correlation based

criterion in the time domain, a frequency-domain cross power

spectrum based criterion is proposed. As the early RIRs are

usually sparse, the RIRs are estimated by jointly maximizing

the cross power spectrum based criterion in the frequency do-

main and minimizing the l1-norm sparsity measure in the time

domain. A two-stage LMS updating algorithm is derived to

achieve joint optimization of these two targets. The experimen-

tal results in different under-modelled scenarios demonstrate

the effectiveness of the proposed method.

Index Terms— Blind system identification, microphone

arrays, system under-modelling.

1. INTRODUCTION AND PRIOR WORK

In an enclosure, the room impulse responses (RIRs) from a

source to a microphone array can be estimated by multichan-

nel blind system identification (BSI) using the multichannel

outputs. In many applications such as speaker localization

[1, 2, 3], room geometry identification [4, 5], and acoustic

RAKE receivers [6, 7], only the early part of the RIR is of in-

terest. This motivates the under-modelled BSI problem which

allows the identified system to be shorter than the real one.

Over the past few decades, different algorithms for multi-

channel BSI have been proposed. Widely used multichannel

BSI algorithms are formulated adaptively in the least mean

squares (LMS) framework, including the multichannel LMS

(MCLMS) algorithm [8], multichannel Newton (MCN) algo-

rithm [8], multichannel frequency-domain LMS (MCFLMS)
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algorithm [9] and normalized MCFLMS (NMCFLMS) algo-

rithm [9]. These algorithms are generally based on the cross-

relation (CR) property [10], and the RIRs are estimated by min-

imizing the CR error. However, it has been shown that when

the system is under-modelled, the CR property is no longer

valid [11]. Therefore, conventional adaptive algorithms cannot

yield accurate RIR estimates with system under-modelling.

In our recent work, a time-domain cross-correlation and s-

parsity regularization (CSR) based algorithm was proposed for

under-modelled multichannel BSI [11]. Instead of minimizing

the CR error, the RIRs were estimated by maximizing a cross-

correlation based criterion. It was shown that, in this way, the

adverse effect of system under-modelling is greatly reduced.

Furthermore, the sparsity of the early RIR was exploited to

improve the BSI performance.

For adaptive multichannel BSI, frequency-domain meth-

ods have received more attention since the filter updating

can be performed frame-wise, and the convolution and cross-

correlation operation which are computationally intensive in

the time domain can be efficiently implemented by fast Fourier

transform (FFT) [9]. Inspired by this, a frequency-domain

under-modelled multichannel BSI algorithm is proposed in

this paper. Analogous to maximizing a cross-correlation based

criterion in the time-domain method, in the proposed method,

the RIRs are estimated by maximizing a cross power spectrum

based criterion. In addition, the l1-norm sparsity measure is

also integrated into the optimization problem to promote the

sparsity of the estimated RIRs. As the sparsity measure is com-

puted in the time domain, a two-stage LMS updating algorithm

is derived to achieve joint optimization of both frequency-

domain and time-domain targets. By conducting experiments

in different under-modelled scenarios, we demonstrate the

effectiveness of the proposed method.

2. TIME-DOMAIN UNDER-MODELLED BSI

We begin with formulating the BSI problem in the time domain

and briefly introduce our previous time-domain algorithm [11].

Consider a reverberant room with a single source and an

M -element microphone array. The time-domain signal vector

received by the i-th microphone is expressed:

xi(n) = Hi · s(n) + vi(n), i = 1, 2, ...,M, (1)
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where xi(n) = [xi(n) xi(n− 1) . . . xi(n−K + 1)]T is the

K × 1 signal vector, K is the length of the final identified

RIR. vi(n) is the additive noise vector. Hi is a K × (K +
L − 1) upper-rectangular Toeplitz matrix whose first row is

[hT
i 01×K−1], where hi = [hi,0 hi,1 . . . hi,L−1]

T is the

true L-tap RIR of the i-th channel. s(n) = [s(n) s(n −
1) . . . s(n −K − L + 2)]T is the (K + L − 1) × 1 source

signal vector.

Multichannel BSI aims to estimate the RIRs with xi(n)
for i = 1, 2, ...,M . When K < L, the BSI problem be-

comes under-modelled. Given the estimated RIR ĥi for i =
1, 2, ...,M , the cross-filtered signals can be computed pairwise

by convolving the output of one channel with the RIR of the

other channel, as

x̃ij(n) = ĥT
i xj(n), i, j = 1, 2, ...,M. (2)

In [11], we propose to estimate RIRs based on maximizing

the cross-correlation of the cross-filtered signals. It has been

shown that compared with minimizing the CR error, in the sys-

tem under-modelling case, maximizing the cross-correlation

of the cross-filtered signals produces much smaller bias term

to the objective function, thus the adverse effect of system

under-modelling is reduced. To avoid a scale ambiguity, the

vector ĥ = [ĥT
1 ĥT

2 · · · ĥT
M ]T is constrained to be unit norm.

By using all microphone pairs, and imposing the unit norm

constraint on ĥ at all times, a cross-correlation based cost

function is constructed as

J(ĥ) =

∑M−1
i=1

∑M
j=i+1 E{x̃ij(n) · x̃ji(n)}

||ĥ||22
. (3)

By promoting sparsity, an optimization problem is formu-

lated as

ĥ = argmin
h

{−J(h) + ρ|h|1}, s.t. ||h||2 = 1, (4)

where ρ is a regularization parameter. In [11], the optimization

problem in (4) is solved adaptively based on the split Bregman

method [12]. The details of the adaptive updating are omitted

here for brevity.

3. PROPOSED METHOD

In this section, we extend the time-domain algorithm to the

frequency domain such that frame-level updating can be per-

formed, and the efficiency of FFT is exploited to reduce the

computational complexity.

3.1. Cross Power Spectrum of Cross-Filtered Signals

The cross-correlation of cross-filtered signals in the time do-

main corresponds to the cross power spectrum in the frequency

domain.

Based on the overlap-save technique [13], with 2K frame

length and 50% overlap, the K × 1 time-domain cross-filtered

signal vector x̃ij(m) for the m-th frame can be written as the

second half of the circular convolution between ĥi and xj [9]:

x̃ij(m) = W01
K×2KCxj

(m)W10
2K×K ĥi(m), (5)

where x̃ij(m) = [x̃ij(m) x̃ij(m+1) . . . x̃ij(m+K − 1)]T ,

W01
K×2K = [0K×K IK×K ], W10

2K×K = [IK×K 0K×K ]T ,

and Cxj (m) is a circulant matrix with the first column as

[xj(mK −K) . . . xj(mK) . . . xj(mK +K − 1)]T .

By using FFT to efficiently perform circular convolution,

the frequency-domain expression of the cross-filtered signal is

obtained as:

x̃ij(m) = FK x̃ij(m)

= FKW01
K×2KCxj (m)W10

2K×K ĥi(m)

= W01
K×2KDxj

(m)W10
2K×Kĥi(m), (6)

where FK is the K × K discrete Fourier transform (DFT)

matrix, Dxj
(m) = F2KCxj

F−1
2K is a diagonal matrix whose

diagonal elements are the DFT of the first column of Cxj (m),

ĥi(m) = FK ĥi(m) consists of the K-point DFTs of ĥi(m),

W01
K×2K = FKW01

K×2KF−1
2K ,

W10
2K×K = F2KW10

2K×KF−1
K . (7)

Accordingly, the cross power spectrum of a pair of cross-

filtered signals is computed as

γ
ij
= E{x̃H

ij (m)x̃ji(m)}

= E{ĥH

i (m)(W10
2K×K)HP ij(m)W10

2K×Kĥj(m)}
= E{[ĥ10

i (m)]HP ij(m)ĥ
10

j (m)}, (8)

where ĥ
10

i (m) = W10
2K×Kĥi(m), and P ij(m) = DH

xj
(m)

× (W01
K×2K)HW01

K×2KDxi
(m).

3.2. Optimization Problem Formulation

Analogous to the cross-correlation based criterion in the time-

domain, a new frequency-domain criterion based on the cross

power spectrum of the cross-filtered signals is constructed. As

the early RIR is generally sparse in the time-domain, an l1-

norm term computed using the time-domain RIRs is integrated

into the optimization problem.

It should be noted that the cross power spectrum in (8) is

a complex number, therefore it cannot be optimized directly.

By utilizing the fact that x̃H
ij (m)x̃ji(m) = (x̃H

ji(m)x̃ij(m))∗,
and using all microphone pairs, a real-valued cost function can

be first formed as:

Jf (ĥ
10
(m)) =

M∑

i=1

M∑

j=1,j �=i

x̃H
ij (m)x̃ji(m)

=
M∑

i=1

M∑

j=1,j �=i

[ĥ
10

i (m)]HP ij(m)ĥ
10

j (m), (9)
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where ĥ
10
(m) = [[ĥ

10

1 (m)]H [ĥ
10

2 (m)]H . . . [ĥ
10

M (m)]H ]H .

Similar to the time-domain approach, the RIRs can be

estimated by maximizing the cross power spectrum based

cost function. However, simply maximizing Jf (ĥ
10
(m)) will

lead to the trivial infinity solution. To avoid this, we restrict

‖ĥ‖22 = ĥT ĥ = 1 and equivalently [ĥ
10
(m)]H ĥ

10
(m) = 2K

from the Parseval’s theorem. Ignoring the scaling factor 2K, a

new cost function is defined as

Jf (ĥ
10
(m))

=
Jf (ĥ

10
(m))

[ĥ
10
(m)]H ĥ

10
(m)

=
Jf (ĥ

10
(m))

∑M
i=1[ĥ

10

i (m)]H ĥ
10

i (m)
. (10)

We aim to find the RIRs which maximize Jf (ĥ
10
(m)) in

the frequency domain and also being sparse in the time domain.

This sparsity is typically measured by the l1-norm of time-

domain RIR vector ĥ. To combine the two targets into one op-

timization problem, note that ĥ
10

i (m) = F2KW10
2K×K ĥi(m),

then Jf (ĥ
10
(m)) in (10) is also a function of ĥ(m) and can be

written as Jf (ĥ(m)). By imposing the unit norm constraint,

an optimization problem is formulated as:

ĥ = argmin
h

{−J̄f (h) + ρ|h|1}, s.t. ‖h‖2 = 1, (11)

where J̄f (h) = E{Jf (ĥ(m))}, and ρ is a regularization pa-

rameter for sparsity.

3.3. LMS Updating

We notice that although J̄f (h) in (11) is calculated in the

frequency domain, we can, by expressing it as a function

of the time-domain vector h, obtain a optimization problem

which has a similar form to (4). Following [11], an LMS-type

algorithm is proposed in this subsection, which is based on the

split Bregman algorithm [12]. A two-stage updating scheme is

derived, which first updates the RIRs in the frequency domain

and then promotes sparsity in the time domain.

According to [2], temporarily omitting the unit norm con-

straint for clarity, (11) can be reformulated as

(ĥ, d̂) = argmin
h,d

{−J̄f (h) + ρ|d|1 + λ‖d− h‖22}, (12)

where d is a (MK) × 1 auxiliary variable vector, with d̂ as

the estimate, and λ is a Lagrange multiplier.

Based on the split Bregman iteration method [12], (12) can

be iteratively solved by

(ĥ, d̂)k+1 = argmin
h,d

{−J̄f (h) + ρ|d|1 + λ‖bk + h− d‖22},
(13a)

bk+1 = bk + ĥk+1 − d̂k+1, (13b)

where b is a (KM)×1 Bregman variable vector, and k denotes

the iteration index. Reinserting the unit norm constraint, (13a)

can be transformed into two sub-problems [2]:

ĥk+1 = argmin
h

{−J̄f (h) + λ‖bk + h− d̂k‖22},
s.t. ‖h‖2 = 1. (14a)

d̂k+1 = argmin
d

{ρ|d|1 + λ‖bk + ĥk+1 − d‖22}. (14b)

Solving (14a): In the frequency-domain method, the RIRs

are updated in each frame. The problem can be solved using

gradient descent, and the gradient consists of components

from both the frequency-domain and time-domain objective

functions. A two-stage updating scheme is derived here.

In the first stage, we update the RIRs in the frequency

domain. Rewriting Jf (h) as Jf (ĥ
10
(m)), the RIR of the i-th

channel is updated as

ĥ
10

i (m+ 1) = ĥ
10

i (m) + μ
∂Jf (ĥ

10
(m))

∂(ĥ
10

i (m))∗
, (15)

where μ is the step size. According to (10), we further have

∂Jf (ĥ
10
(m))

∂(ĥ
10

i (m))∗

=

∂Jf (ĥ
10

(m))

∂(ĥ
10

i (m))∗

[ĥ
10
(m)]H ĥ

10
(m)

− Jf (ĥ
10
(m))ĥ

10

i (m)

{[ĥ10
(m)]H ĥ

10
(m)}2

=

∑M
j=1,j �=i P ij(m)ĥ

10

j (m)

[ĥ
10
(m)]H ĥ

10
(m)

− Jf (ĥ
10
(m))ĥ

10

i (m)

{[ĥ10
(m)]H ĥ

10
(m)}2

=

∑M
j=1,j �=i P ij(m)ĥ

10

j (m)

2K
− Jf (ĥ

10
(m))ĥ

10

i (m)

4K2
.

(16)

The last step of (16) is because of the unit norm constraint.

In the second stage, the RIRs are transformed into the time

domain, and updated to promote sparsity:

ĥi(m+ 1)

= W 10
K×2KF−1

2K ĥ
10

i (m+ 1)− μλ
∂‖bm + h(m)− dm‖22

∂ĥi(m)

= W 10
K×2KF−1

2K ĥ
10

i (m+ 1)− 2μλ(bm
i + ĥi(m)− dm

i ).
(17)

After updating, by reimposing the unit norm constraint,

the RIRs are normalized as

ĥi(m+ 1)

=
W 10

K×2KF−1
2K ĥ

10

i (m+ 1)− 2μλ(bm
i + ĥi(m)− dm

i )

‖W 10
K×2KF−1

2K ĥ
10

i (m+ 1)− 2μλ(bm
i + ĥi(m)− dm

i )‖2
.

(18)
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Fig. 1. Comparison results for K = 128: (a) The target RIR,

and RIRs estimated by (b) the proposed method, (c) CSR, (d)

SMCLMS, (e) NMCFLMS and (f) SNMCFLMS.

Solving (14b): Following [12], we update d̂ in frame m as

d̂m+1
i =sign(ĥi(m+ 1) + b̂m

i )

×max{|ĥi(m+ 1) + b̂m
i | − ρ

2λ
, 0}. (19)

b is updated according to (13b).

4. EVALUATION

In this section, we conduct experiments on simulated data. The

proposed method is compared with the NMCFLMS algorithm

in [9], the sparse MCLMS (SMCLMS) algorithm and sparse

NMCFLMS (SNMCFLMS) algorithm in [2], and our previous

time-domain CSR algorithm in [11].

We model a 5 m × 6 m × 3 m room using the image-

source method [14]. A two-element microphone array with

microphones at (2.4, 2.0, 1.6) m and (2.6, 2.0, 1.6) m is used.

The source signal is 10 s white Gaussian noise with 8 kHz

sampling rate. The source position is (2.05, 3.95, 1.67) m.

RIRs are simulated by setting the reverberation time as 300 ms

and filter length L as 128.

The BSI is evaluated with fully-modelled K = L = 128
and under-modelling K = {64, 32}. The parameters of the

proposed method are empirically chosen as μ = 3, ρ = 6 ·
10−5, λ = 0.08 and kept fixed in the experiments.

The RIRs estimated are shown from Fig. 1 to Fig. 3 for 5

different algorithms. Only the second channel is displayed for

brevity. It can be seen that in the fully-modelled case (Fig. 1),

conventional algorithms achieve better performance than the

proposed method and the CSR for reasons analyzed in [11].

However, when the system is under-modelled, conventional

methods fail to work reliably whereas the proposed method

and the CSR algorithm can accurately estimate the target RIR

(Fig. 2, 3). We note that the performance of the proposed

method is similar to that of the CSR algorithm.

We next compare the computational complexity of differ-

ent algorithms. For each K, the BSI is performed by using

each algorithm for 100 times, and only the execution time
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Fig. 2. Comparison results for K = 64: (a) The target RIR,

and RIRs estimated by (b) the proposed method, (c) CSR, (d)

SMCLMS, (e) NMCFLMS and (f) SNMCFLMS.

0 32 64 96 128
(a)

-0.5

0

0.5

A
m

pl
itu

de Target RIR

0 32 64 96 128
(b)

-0.5

0

0.5 Proposed, NPM = -11dB

0 32 64 96 128
(c)

-0.5

0

0.5

A
m

pl
itu

de CSR, NPM = -12dB

0 32 64 96 128
(d)

-0.5

0

0.5 SMCLMS, NPM = -0.071dB

0 32 64 96 128
(e)

Sample Index

-0.5

0

0.5

A
m

pl
itu

de NMCFLMS, NPM = -0.066dB

0 32 64 96 128
(f)

Sample Index

-0.5

0

0.5 SNMCFLMS, NPM = -0.067dB

Fig. 3. Comparison results for K = 32: (a) The target RIR,

and RIRs estimated by (b) the proposed method, (c) CSR, (d)

SMCLMS, (e) NMCFLMS and (f) SNMCFLMS.

of LMS updating is counted. The average execution time is

normalized with respect to that of the NMCFLMS algorithm

for K = 32. From Fig. 4 we see that while achieving simi-

lar performance with CSR, the average execution time of the

proposed method is extremely lower.

5. CONCLUSION

In this paper, we propose a frequency-domain under-modelled

multichannel BSI algorithm based on cross power spectrum

and sparsity regularization. By exploiting the efficiency of FFT,

we achieve similar BSI performance with our previous time-

domain under-modelled BSI method while the computational

complexity is greatly reduced.

0.66 

3.64 
2.98 

1.00 0.79 
0.29 

3.60 
3.18 

0.52 0.54 

0.22 

4.41 
3.57 

0.37 0.39 

0

2

4

6

Proposed CSR SMCLMS NMCFLMS SNMCFLMS

N
or

m
al

iz
ed

 T
im

e

K=32 K=64 K=128

Fig. 4. Average execution time of different algorithms.
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