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gpinyero@iteam.upv.es

Patrick A. Naylor

Department of Electrical and
Electronic Engineering

Imperial College London (United Kingdom)
p.naylor@imperial.ac.uk

ABSTRACT

In this paper we deal with the estimation of the room impulse re-
sponse (RIR) between each loudspeaker and each microphone of
a wireless acoustic network of two nodes when used to implement
a crosstalk canceller. The nodes of the network are commercial
devices connected via standard wireless links, presenting low com-
putational requirements and non-ideal synchronization between
them. Moreover, the nodes can exchange information, but they
cannot share their signals due to the high throughput and perfect
synchronism that would be required. The proposed scheme adap-
tively estimates the global impulse response between the source
signals and the recorded signal at each node of the network, and
afterwards estimates the corresponding RIRs between each loud-
speaker and the node’s microphone. This scheme does not need
any additional synchronism between loudspeakers. Simulations
show that proportionate-type affine projection algorithms obtain
good performance for order N = 4, being their cost affordable in
commercial devices.

Index Terms— Channel identification; crosstalk cancellation;
wireless acoustic networks; adaptive algorithms

1. INTRODUCTION

Most of the applications regarding the enhancement of the quality
of a sound signal recorded inside a room, or regarding the render-
ing of a sound signal to a particular location of a room, need to
know the characteristics of the acoustic channels between the sound
source and the recording position. Therefore, the estimation of the
room impulse response (RIR) has been widely studied in the liter-
ature, resulting in a variety of techniques. The classical methods
make use of white noise, chirp signals or maximum length sequences
(MLS) [1, 2], but these techniques cannot be used when the RIRs
have to be adaptively updated at the same time that the system is
operating.

One approach is to characterize the RIR, or its acoustic transfer
function, by a statistical model including a direct path and a rever-
beration part. In [3] this statistical model is used to equalize only
the direct path and to measure the error that produces the other part.
In [4] this statistical model is used to evaluate the performance of
a multichannel Wiener filter for dereverberation. A second popular
approach is to perform a blind estimation of the RIRs based on the
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minimization of the cross-relation between the signals recorded by
multiple microphones [5]. A sparsity constraint may also be applied
to the estimated RIR or any other property as its non-negativity [6].

Generally speaking, RIR estimation depends on the specific sys-
tem and application. Focusing on the crosstalk canceller (CC) [7, 8]
presented in this paper, it is implemented on a two-node wireless
acoustic sensor network (WASN) [9], which usually presents cer-
tain constraints: non-perfect synchronism, low computation require-
ments, and low data exchange capacity between nodes [10, 11, 12].
Taking into account these constraints, we propose in this paper an
adaptive system to estimate the RIRs involved in the WASN that is
robust against any lack of synchronism due to the wireless connec-
tions, and that requires low computation. Simulations show that the
proposed scheme obtains good results even for abrupt changes in the
RIRs involved.

The outline of the paper is as follows: Section 2 states the basic
formulation of a crosstalk canceller over a two-node WASN. Sec-
tion 3 discusses two possible approaches in order to re-estimate the
acoustic channels and proposes two different solutions based on the
same adaptive system. Section 4 presents some simulation results
and Section 5 summarizes the main conclusions of the paper.

2. MODEL FORMULATION

The block diagram of a CC of two microphones and two loudspeak-
ers implemented over a WASN is shown in Fig. 1. This is the sim-
plest example case of CC, but our method for channel estimation can
be straightforwardly extended to M > 2 loudspeakers controlled by
two or more nodes. The target application of the CC is to use the
loudspeakers to render sound s1(n) at the location of the first node
microphone, and at the same time, to render sound s2(n) at the posi-
tion of the second node microphone. If we denote x1(n) and x2(n)
of Fig. 1 the signals recorded by the microphones of the first and sec-
ond node respectively. The relation between the microphones and
the source signals are expressed by

x1(n) = [c11 ∗ h11 + c12 ∗ h21] ∗ s1(n)
+ [c11 ∗ h12 + c12 ∗ h22] ∗ s2(n) . (1)

x2(n) = [c21 ∗ h11 + c22 ∗ h21] ∗ s1(n)
+ [c21 ∗ h12 + c22 ∗ h22] ∗ s2(n) . (2)

where ∗ denotes discrete-time convolution, cij is the electro-
acoustic path between the jth loudspeaker and the ith microphone
and is modelled as the finite impulse response (FIR) filter:

cij =
[
cij(0) cij(1) · · · cij(Lc − 1)

]T
,
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Fig. 1. Crosstalk canceller implemented in a two-node WASN.

where (·)T stands for matrix transpose, i, j = 1, 2, and Lc is the
maximum length in samples of all the paths involved. The filters hji

are FIR filters of Lh coefficients defined as:

hji =
[
hji(0) hji(1) · · · hji(Lh − 1)

]T
,

Due to the low computation requirement of the WASN, the filters
hji of Fig. 1 are computed using the least squares (LS) solution in
the frequency domain [13]. Denoting the kth frequency bin of the
FFT of the acoustic channel cij as Cij(k), and the kth frequency
bin of the FFT of the filter hji as Hji(k), we build matrices

C(k) =

[
C11(k) C12(k)
C21(k) C22(k)

]
,

H(k) =

[
H11(k) H12(k)
H21(k) H22(k)

]
,

and formulate the least squares problem as:

C(k)H(k) = I , (3)

and its LS solution as:

H(k) = CH(k)
(
C(k)CH(k) + βCI

)−1

, (4)

where (·)H indicates conjugate transpose, I is the identity matrix,
and βC is a regularization parameter [13]. For a system of M loud-
speakers, dimensions of matrices C(k) and H(k) will be [2 ×M ]
and [M × 2] respectively.

Regarding the calculation of matrix H(k) in (4), its first row
contains the filter coefficients of the first node, whereas its second
row contains those of node 2. As (4) is not separable in rows, both
nodes must calculate the whole matrix H(k). For this purpose both
nodes need to know the whole matrix C(k), that is, the acoustic
channel cij must be previously estimated at the nodes. A detailed
explanation on how to simultaneously estimate the four channels cij
making use of two MLS can be found in [14]. Summarizing the
main aspects of the estimation process in [14], node 1 estimates c11
and c12 at the same time that node 2 estimates c21 and c22. After-
wards they exchange their respective estimates to calculate the FFTs
needed to form matrix C(k) and obtain (3). In order to exchange in-
formation between the nodes, they are interconnected via a wireless
link and they run a specifically designed procedure to synchronize
their clocks [15, 14].

3. ADAPTIVE IDENTIFICATION OF THE ACOUSTIC
CHANNELS

One of the main advantages of a WASN is its flexibility in its de-
ployment, so one loudspeaker or a microphone can be moved to a

new position, thus the acoustic paths involved in Fig. 1 can vary in
time and should therefore be adaptively re-estimated. Regarding the
availability of signals at each node, node 1 of Fig. 1 has access to
source signals s1(n), s2(n), to its own microphone signal, x1(n),
and to its own loudspeaker signal v1(n), whereas the signals avail-
able at node 2 are s1(n), s2(n), x2(n) and v2(n). In order to design
an adaptive scheme to re-estimate acoustic channels cij , two differ-
ent approaches are stated in the following.

3.1. Direct estimation

To discuss this approach, let us consider only node 1 of Fig. 1. The
direct estimation of acoustic paths c11 and c12 should need loud-
speakers signals v1(n) and v2(n) as the inputs to their respective
adaptive filters, and the microphone signal x1(n) as the reference
signal. Since all the filters involved in the CC have been computed
at each node through equation (4), signal v2(n) = h21 ∗ s1(n) +
h22∗s2(n) can also be computed at node 1. Assuming the filtering is
performed in the frequency domain through FFTs of NF points, the
extra computational cost to obtain v2(n) is due to the complex prod-
ucts H21(k)S1(k) and H22(k)S2(k) for k = 0, . . . , NF/2 and to
the inverse FFT needed to generate v2(n). Although the extra com-
putational cost could be affordable, the main disadvantage of this
method is the assumption that the signal v2(n) generated by node 1
is perfectly synchronized to the real signal v2(n) generated by node
2, which is not the case in WASNs [14].

3.2. Global Impulse Response (GIR) estimation

This second approach uses the source signals s1(n) and s2(n) as
the inputs to the adaptive filters, and microphone signal x1(n) and
x2(n) as the reference signals, and adaptively estimates the global
impulse responses a11, a12, a21 and a22 based on:

x1(n) = a11 ∗ s1(n) + a12 ∗ s2(n) , (5)
x2(n) = a21 ∗ s1(n) + a22 ∗ s2(n) , (6)

where the GIRs are defined from (1)-(2) as:

a11 = c11 ∗ h11 + c12 ∗ h21 , (7)
a12 = c11 ∗ h12 + c12 ∗ h22 , (8)
a21 = c21 ∗ h11 + c22 ∗ h21 , (9)
a22 = c21 ∗ h12 + c22 ∗ h22 . (10)

The block diagrams to estimate the GIRs at each node are shown
in Fig. 2. They are based on equations (5)-(6). The upper branch of
node 1 in Fig. 2(a) tries to minimize the mean square error (MSE) of
error signal e11(n) defined as:

e11(n) = a11 ∗ s1(n)− â11 ∗ s1(n) . (11)

Substituting a11 ∗ s1(n) by its expression in (5), we obtain:

e11(n) = x1(n)− â12 ∗ s2(n)− â11 ∗ s1(n) , (12)

where we have used the current estimate of a12 obtained in the lower
branch of Fig. 2(a) and denoted by â12. In the same way, the estima-
tion of GIR a12 is obtained through the minimization of the MSE of
e12(n) = a12 ∗ s2(n)− â12 ∗ s2(n), substituting a12 ∗ s2(n) from
its expression in (5), and using the current estimate of the direct GIR
given by â11:

e12(n) = x1(n)− â11 ∗ s1(n)− â12 ∗ s2(n) . (13)
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Fig. 2. Adaptive systems to identify (a) GIRs a1j of node 1, and (b)
GIRs a2j of node 2.

It is straightforward to state from expressions (12) and (13) that
both error signals are equal, and that a compact system can be pro-
posed to jointly identify the GIRs of Fig. 2(a). Let us define the
length of the GIRs as La = Lc + Lh − 1, and define vectors

â1 =
[
âT
11 âT

12

]T
,

s(n) =
[
s1(n)

T s2(n)
T
]T

,

as the concatenation of GIRs and the concatenation of the source sig-
nals samples needed to perform the filtering in Fig. 2(a) respectively,
where si(n) =

[
si(n) si(n− 1) · · · si(n− La + 1)

]T for
i = 1, 2. Then, the estimation can be carried out minimizing the
MSE of the same error signals but expressed as

e11(n) = e12(n) = x1(n)− âT
1 s(n) . (14)

Finally, the same idea can be applied to adaptive system of node
2 in Fig. 2(b), obtaining its common error signal as

e21(n) = e22(n) = x2(n)− âT
2 s(n) , (15)

where â2 =
[
âT
21 âT

22

]T .

3.2.1. RIR estimation

Once the adaptive filters have converged and the GIRs are iden-
tified either using the systems of Fig. 2 or their equivalent com-
pact expression, the estimation of the acoustic channels cij is per-
formed through the LS solution to (7)-(10) in the frequency do-
main. Defining row vectors ĉj(k) = [Ĉj1(k), Ĉj2(k)] and gj(k) =

[Âj1(k), Âj2(k)] for j = 1, 2, where Âj1(k) and Âj2(k) are the kth
bin of the FFT of âj1 and âj2 respectively, then the acoustic channel
estimate is obtained as the regularized LS solution to:

HT (k)ĉTj (k) = gT
j (k) , j = 1, 2 , (16)

that is given by [16]:

ĉTj (k) =
(
H(k)HH(k) + βHI

)−1

H(k)gT
j (k), (17)

where βH is the regularization parameter. Regarding the synchro-
nization between both nodes for this solution, any asynchronism be-
tween the nodes will be reflected in the estimation of the GIRs, pro-
viding a more robust solution compared to the direct estimation.

3.2.2. Adaptive algorithms

To estimate the GIRs we propose to investigate the use of the affine
projection algorithm (APA) [17, 18], the improved proportionate
NLMS (IPNLMS) [19] and the memory-improved proportionate
APA (MIPAPA) [20]. The two last algorithms were originally pro-
posed for channels with sparse impulse responses [21], presenting
fast convergence and good performance estimation. A supporting
reason to choose the proportionate-type algorithms is that the GIRs
are expected to be sparse in time since they are estimated once the
CC filters have been designed and are already operating. To de-
sign the filters in (4), the WASN performs an initial estimation of the
RIRs cij using MLS [14], as it was explained in Section 2. Therefore
the initial shape of the direct GIRs a11 and a22 is impulse-like and
therefore is highly sparse. When the channel varies, their impulse-
type RIRs also vary, but even so they maintain a considerable degree
of sparseness.

4. SIMULATION RESULTS

The WASN used to implement the crosstalk canceller is formed by
two tablet computers running the Android operating system and two
wireless loudspeakers connected to the tablets via Bluetooth. The
tablets include one built-in microphone each. Some pictures of the
WASN deployed, together with experiment results of the CC system
can be found in [22].

The channels to be estimated are real acoustic responses mea-
sured inside a listening room of 9.36m long by 4.78m wide by 2.63m
high located at the Audio Processing Laboratory of the Polytechnic
University of Valencia, and modelled as FIR filters of Lc = 1200
coefficients. The length of the CC filters is Lh = Lc and the sam-
pling frequency is 11025 kHz. Source signals s1(n) and s2(n) are
uncorrelated white noises and have been scaled to a maximum am-
plitude of |si(n)| ≤ 1. The microphone signals x1(n) and x2(n)
are respectively corrupted by two independent white Gaussian noises
resulting in a signal-to-noise ratio of 20 dB. All the algorithms use
the same step-size µ = 0.2, whereas the regularization constant is
δ = 20σ2

s/2La for the MIPAPA algorithms [20], δ = 0.5σ2
s for the

APA algorithms, and δ = (1 − α)σ2
s/2La for the IPNLMS algo-

rithm, being σ2
s the power of the corresponding input signal. The

parameter α = −0.5 for all the proportionate-type algorithms.
First, we obtain the normalized misalignment (in dB) defined

as 20 log10(‖aij − âij(n)‖2/‖aij‖2) as the performance measure-
ment, where aij are the true GIRs obtained in (7)-(10). The re-
sults are averaged over 20 independent trials. In order to evaluate
the speed of convergence, an abrupt change of the acoustic chan-
nels is introduced half-way through the experiment. During the first
time period the adaptive system is operating with the CC filters de-
signed in (4). In this first period, the acoustic channels used in the
simulation are the same channels used to design the filters. At the
time of the channel change, the acoustic channels change abruptly
(they are real channels measured in the same room and with the same
deployed WASN, but with different relative delays between them),
whereas the CC filters are unchanged. Fig. 3 and Fig. 4 show the
misalignment performance of the system for node 1 and node 2 re-
spectively.

588



Time (s)
0 5 10 15 20 25 30 35 40 45

dB

-20

-15

-10

-5

0

5

Time (s)
0 5 10 15 20 25 30 35 40 45

dB

-20

-15

-10

-5

0

5

GIR a
11

GIR a
12

APA(4)

APA(3)

APA(2)
IPNLMS

MIPAPA(2)

MIPAPA(3)

MIPAPA(4)

APA(2)

APA(3)

APA(4)

MIPAPA(3)

MIPAPA(2)

IPNLMS

MIPAPA(4)

Fig. 3. Misalignment curves of the adaptive filters of node 1 in
Fig. 2(a). Upper figure corresponds to â11 and lower figure to â12.
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It can be observed that the performance of the proportionate-
type algorithms is significantly better than the APA during the first
half of the experiment for the direct GIRs a11 and a22, which is con-
sistent with the good performance of proportionate algorithms when
dealing with sparse impulse responses. Regarding the behaviour of
the adaptive algorithms during the second half of the experiment,
the MIPAPA of order N outperforms the corresponding APA of the
same order, but the difference is very small. Moreover, APA and
MIPAPA algorithms of order N = 4 present a decreasing misalign-
ment in the second half of the the cross GIRs a12 in Fig. 3 and a21

in Fig. 4, improving the misalignment obtained for the same filters
within the first time period.

In Fig. 5 the results obtained by the compact system of equa-
tions (14)-(15) are compared to those obtained by the adaptive sys-
tem of Fig. 2, but only for the MIPAPA and APA algorithms of order
N = 4. It can be seen that the performance of the compact sys-
tem (denoted by the prefix “C-” in the name of the curves) is slightly
worse than that of the original system for the second half of samples.
A plausible explanation of this behaviour is to consider the influence
of the covariance matrix of the source signals in the projection step
of the APA algorithms. It seems more suitable to use separate pro-
jection steps for every filter aij such that each adaptive algorithm
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uses only the covariance matrix of its own source si(n).
Finally, Fig. 6 shows the normalized mean square error (MSE)

in dB between the true and the estimated RIRs once the algorithms
have converged. The figure at the left shows the error for the original
system proposed in Fig. 2 whereas the figure at the right shows the
results obtained by the compact system. Both figures are represented
in the same dB scale in order to be easily compared. It can be seen
that the two-branch model of Fig. 2 obtains better performance in
the final estimation of the RIRs cij as it did in the case of the GIRs.
Regarding the comparison between MIPAPA and APA algorithms,
the MSE of MIPAPA of order N − 1 is similar to that of APA of
order N . Summarizing, the best choice in our experiments is to use
MIPAPA of order N = 4 (or N = 3 if low computation is required)
and the adaptive systems proposed in Fig. 2.

5. CONCLUSIONS

In this paper we have presented an adaptive scheme to estimate the
RIRs involved in a WASN of two nodes when a crosstalk canceller is
working. The proposed scheme is robust to the lack of synchronism
in the wireless links, has a small computational cost, and obtains
good performance when proportionate-type APA is used. The nor-
malized MSE of the estimated RIRs are around 7.5 dB for the MI-
PAPA algorithm of order N = 4, and 6.5 dB for the same algorithm
and order N = 3.
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