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ABSTRACT

In this paper we present a non-iterative impulse response shortening
method aiming to reduce the latency of a system. Our method ex-
ploits that smoothing the frequency-domain response generally leads
to a shorter time-domain response. The method is simple to imple-
ment and has a computational complexity that is significantly lower
than that of competing methods. Yet it achieves good performance.
It can be used for applications involving system identification such
as blind source separation (BSS), cross-talk cancellation and chan-
nel equalization. Our experimental results confirm the effectiveness
of the method, demonstrating the benefit of the approach in the BSS
and cross-talk cancelling applications.

Index Terms— Impulse response shortening, low latency, blind
source separation, cross-talk cancellation

1. INTRODUCTION

In recent years, impulse response shortening methods have been
studied widely for different applications. These include, but are not
limited to, blind source separation (BSS) [1–3], speech dereverber-
ation [4], channel equalization [5] and cross-talk cancellation [6, 7].
It has been used to minimize the artifacts resulting from circular
convolution [1, 2] associated with the use of the fast Fourier trans-
form and to compensate for the room reverberation with minimal la-
tency [5–7]. We distinguish latency due to estimation computational
time and due to algorithmic delay.

The algorithmic delay is of major importance for real-time appli-
cations involving system identification. In audio-processing applica-
tions, the channels contain memory, which results in a convolutive
mixing process. To facilitate the estimation, the problem is usually
transformed into the time-frequency (TF) domain using a short-time
(ST) window. The channel in the frequency domain can then be in-
dependently estimated in every frequency bin. However, to account
for the room reverberation, a long window is often needed. This pro-
longs the time taken for the signal acquisition, resulting in a system
with a large algorithmic delay.

BSS is an example application where the latency problem oc-
curs. The goal of blind source separation (BSS) is to extract the
original sources from the observed mixtures with neither the prior
knowledge of the mixing process nor the sources. Many TF-domain
BSS approaches have been proposed. An overview of approaches
can be found in [8, 9]. The traditional methods, including the well-
known independent component analysis (ICA) approach [10] and
the independent vector analysis (IVA) method [11], utilize the sta-
tistical properties to perform separation by assuming that the orig-
inal sources are independent to each other. Later approaches em-
ploy the sparsity of the signals in the TF domain to estimate mixing
matrices. These approaches include the degenerate unmixing esti-
mation technique (DUET) [12], TIme-Frequency Ratio Of Mixtures

(TIFROM) [13] and clustering algorithms [14]. Recently, the non-
negative matrix factorization (NMF) approach [15] has also been
introduced to solve the TF-domain BSS problem. Importantly, all
these approaches assume that the ST window length is at least twice
the room impulse response (RIR), which results in a high-resolution
frequency domain (HRFD).

In practice, BSS approaches operating in the HRFD generally
cannot be applied directly to real-time applications due to the delay
between inputs and outputs. To resolve this problem, we [16] pro-
posed a crossband filtering approach based on [17] to compute a low-
resolution frequency-domain (LRFD) representation of the mixing
filters using the HRFD mixing matrices. It reduces the time-lag of
the system once the calculation is completed but the computational
effort to estimate the crossband filters is high compared to that of the
basic HRFD approach. Hence, the crossband filtering approach is
only useful for stationary scenarios, where the source locations are
fixed in time and the estimates can be updated infrequently.

The latency problem also occurs in cross-talk cancellation ap-
plication. Cross-talk cancellation aims to deliver multiple signals
to multiple listeners independently and simultaneously. Differently
to BSS, the information of the RIRs is usually complete during the
designation of the pre-filters. The pre-filters are used to process the
signals before propagating to the listeners. The time-domain ap-
proaches [6,7] have been proposed to address this problem but suffer
from high computational cost when the length of the RIRs increases.

Impulse response shortening can be applied to both the BSS
and cross-talk cancellation applications to reduce the algorithmic la-
tency. However, all the aforementioned approaches except [1] in-
volve L1-norm or L∞-norm minimization, which can lead to a slow
convergence rate, prolonging the processing time. This again results
in a system with long latency and it is impractical to real-time appli-
cations. Although [1] facilitates the finding of the optimal solution
by using the least-square method, it is difficult to select the correct
parameters and involves inversions of large matrices.

In this paper, we propose a non-iterative method to perform im-
pulse response shortening to reduce the system latency. It reduces
both the computational burden and shortens the time for signal ac-
quisition. Our approach is based on the fact that the spectrum of
a signal becomes smoother when the signal is zero-padded in the
time-domain. Instead of computing the scaling factors by finding
the sparsest representation of the RIRs in the time domain, we search
for the complex scaling factors in the frequency domain that results
in the smoothest spectrum. We demonstrate the advantage of the
method in the BSS and cross-talk cancelling applications.

The paper is organized as follows. Section 2 introduces system
identification model and our proposed method for impulse response
shortening. The implementations of the proposed approach in BSS
and cross-talk cancellation applications are discussed in Section 3
and Section 4, respectively. Section 5 presents the simulation results
of our method. Conclusions are drawn in Section 6.
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2. IMPULSE RESPONSE SHORTENING

In this section, we first review the model of system identification and
discuss the approach for impulse response shortening of [1]. Next,
we introduce our proposed method.

2.1. System identification model

We denote by Hm the frequency response of the RIR between the
microphone m and a source, which is labelled as s. When the length
of the ST window Lw is at least twice the length of the RIR Lh

and it is generally considered that the linear system, the observation
mixtures in the HRFD in a noiseless scenario can be approximated
as [18]:

x(p, k) ≈ H(k)s(p, k), (1)
where x(p, k) and s(p, k) denote the vectors of the observations and
the source, respectively, at time-frame index p and frequency bin k.
H(k) is a vector containing the frequency responses between all the
microphones and the source, e.g.,

[
H1(k) · · · Hm(k)

]T.
To shorten all the estimated RIRs, denoted as Ĥ , a complex scal-

ing factor c(k) can be applied to Ĥ in each frequency bin to obtain
a time-domain response. The complex scaling factor introduces a
time-shift to each frequency component signal. When the factors
are chosen suitably, the frequency component signals can be aligned
such that a short time response is obtained. This causes a filter-
ing effect to the recovered signal [19]. The filtering effect is gener-
ally not a significant issue in most applications. This is particularly
true for BSS, where the scaling ambiguity is usually present in the
frequency-domain approaches.

The approach of [1, 2] now uses a short-time Fourier transform
(STFT) and the time-domain response can be expressed as Vmc,
where

Vm =
∑
l

ElF−1diag(FDlδ)Ĥm, (2)

and c =
[
c(0), · · · , c(Lw − 1)

]T, is a vector of scaling factors. F
is a discrete Fourier transform matrix and diag(·) denotes an op-
erator that converts a vector to a diagonal matrix. Dl, which is a
diagonal matrix, defines the analysis window that is shifted to the l
position. El is a shifting matrix that ensures the overlapping block
are merged correctly. Note that the window length in Dl is shorter
than Lw.

To perform impulse shortening, the authors [1] approximate the
time-domain response to a pulse-like response, such as a delta func-
tion. The delta function is the shortest response as it contains only
a single one and zeros otherwise. An optimal set of the complex
scaling factor c can be obtained by minimizing

∥d−Vc∥2 , (3)

where, ∥·∥2 represents L2-norm. V =
[
V T
m · · · V T

M

]T and

d =
[
dT1 · · · dTM

]T, where dm denotes the delta function that
contains a single one at the peak position of ĥm = Vm1. A trivial
solution of (3) will be c = V†d, where {·}† indicates a Moore-
Penrose pseudoinverse.

In practice, (3) is not a good criterion to be minimized. It re-
quires the estimated RIR ĥm to be sparse, i.e., the amplitude of the
main peak should be relatively large compared to the other peaks.
This is not the case in some applications, e.g. BSS, as the estimated
mixing matrices suffer from the so-called scaling ambiguity across
the spectrum. More details will be discussed in Section 3. In ad-
dition, it needs to perform an inverse operation of large matrices,
which increases the computational burden.

2.2. Proposed method

In this subsection, we propose a non-iterative method to perform
impulse response shortening. Similarly to [1,2], we introduce a new
set of complex scaling factors to shorten the estimated RIRs.

The motivation for our method is based on the fact that zero-
padding a signal in the time domain leads to a smoother frequency
spectrum. We hypothesize that this implies that smoothing the fre-
quency spectrum leads to a short response. Instead of finding the
scaling factors by making the estimated RIRs sparse in the time do-
main as done in [1, 2], we search for a new set of complex scaling
factors in the frequency domain that lead to the smoothest spectrum.

A smooth spectrum can be obtained by altering the coefficients
of the frequency response Ĥk, such that they are maximally similar
to each other in adjacent bins. This can be done by approximating
the coefficients to the ones in the previous frequency bin:

∥H(k − 1)− c(k)H(k)∥2 , k = [1, Lw − 1] (4)

Hence, the frequency response H̃k that varies smoothly in frequency
can be computed as:

H̃(k) =


Ĥ(k)

∥Ĥ(k)∥ k = 0

c(k)Ĥ(k)

∥c(k)Ĥ(k)∥ k = [1, Lw − 1]
, (5)

c(k) =
Ĥ(k)

H
H̃(k − 1)

Ĥ(k)
H
Ĥ(k)

, (6)

where {·}H denotes a Hermitian transpose.
Our proposed approach differs from [1, 2] as the desired time-

domain responses are not required. It does not involve matrix inver-
sion. Unlike [6, 7], our method is non-iterative. Hence, the compu-
tational efficiency is higher, and is simpler to implement. We show
that our proposed method can be implemented to design both the
post-filters as shown in Section 3 for BSS applications and the pre-
filters as presented in Section 4 for cross-talk cancellation imple-
mentations.

3. BLIND SOURCE SEPARATION APPLICATION

This section first reviews the formulation of the BSS problem in the
TF domain. Next, we apply our proposed approach for impulse re-
sponse shortening. This facilitates the computation of the represen-
tations of the LRFD mixing filters. Then, we estimate the demixing
operator in the LRFD based on the shortened mixing filters.

3.1. Problem formulation of BSS

In this subsection, we first briefly provide the necessary background
for BSS. We neglect the effect of noise in the derivation and consider
the overdetermined scenario, where the number of microphones M
is larger than the number of original sources N , i.e. M > N .

The observation mixtures in the HRFD can be written as:

x(p, k) ≈ A(k)s(p, k), (7)

where x(p, k) and s(p, k) now denote the vectors of the observa-
tion mixtures and the original sources at time-frame index p and fre-
quency bin k, respectively, while A(k) represents the mixing matrix
at frequency bin k. The mixing matrices A(k) (or, alternatively, the
demixing matrices), can be estimated using the aforementioned BSS
algorithms [10–15].
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To minimize the algorithmic latency, the BSS problem can be
solved by using a crossband filtering approach [16]. The approach
designs the demixing operators based on the mixing filters in the
LRFD, which are obtained from the HRFD mixing matrices. Hence,
the methods that aim to estimate A(k) [12–14] are preferred.

The estimation delay is large as the computational effort is ex-
tremely high if the estimated mixing matrix, denoted as Â, is di-
rectly used in [16]. Due to the scaling ambiguity, a random complex
scaling factor is introduced into each column of the HRFD mixing
matrix in every frequency bin. This causes a random time-shift in
each frequency band signal and leads to long RIRs.

The computational efficiency in [16] can be improved by short-
ening and truncating the mixing filters beforehand. In this case, the
effect of the crossband filters will be minimal and can be neglected.
This significantly improves the calculation speed. The details will
be discussed in the next subsection.

3.2. Estimating the demixing operator

We follow the method described in [16] to estimate the demixing
operators in the HRFD, which is based on the LRFD mixing filters.
To perform separation, we need to compute the representation of the
shortened mixing filters in the LRFD. The shortened mixing filters
can be obtained by using the proposed method in Section 2.2. It is
done by repeating (5) and (6) for each column of A(k) for every fre-
quency bin, e.g. Ĥ(k) is replaced by Â·n(k) and H̃(k) is replaced
by Ã·n(k), where Z·n indicates the nth column of the matrix Z.

To facilitate the computation in [17], the length of the truncated
RIRs is desired to be the length of the ST window in the LRFD. This
is to diminish the effect of the crossband filters. The truncation can
be done by applying a rectangular window to capture the segments
containing the highest L1-norm, so that the maximal information is
retained. Without loss of generality, we rotate the RIRs, such that
the segments are located in the middle. The truncated RIRs can be
represented as:

Ān = D∗
nÃn, (8)

D∗
n = argmax

Dn∈D
1T

∣∣∣DnÃn

∣∣∣1, (9)

where Ân =
[
â·n(0) · · · â·n(Lw − 1)

]T ∈ RLw×M contains
the shortened RIRs between the nth source and all the M micro-
phones in the time domain. D is a set of zero matrices with an iden-
tity matrix located at the ith column index:

D =
{[

0Ls×i ILs×Ls 0Ls×(Lw−Ls−i)
] ∣∣∣ i ∈ [0, Lw − Ls]

}
,

(10)
where Ls is the length of the ST window in the LRFD.

The truncated RIRs āmn can be found by computing (8) and (9)
repeatedly for n = [1, N ]. Then, we calculate the LRFD representa-
tion of the band-to-band mixing filters [17] and design the demixing
operators in the LRFD using the method described in Section 4 [16].

4. CROSS-TALK CANCELLATION APPLICATION

This section first briefly reviews the problem definition of the cross-
talk cancellation. Then, we implement the proposed response short-
ening approach to design pre-filters for cross-talk cancellation.

The objective of the cross-talk cancellation is to deliver the sig-
nals from Q loudspeakers to R listeners independently and simulta-
neously. In general, Q ≥ R. This can be done by designing R ×Q
pre-filters to compensate for the Q×R RIRs between the loudspeak-
ers and the listeners.

Let us define grq as the time-domain pre-filter that compensates
for the signal, which propagates from the qth loudspeaker to the rth

listener. Let us denote by bqr the RIR between the loudspeaker q
and the listener r in the time domain. A time-domain approach to
finding the pre-filters can be found in [6, 7]. Both methods involve
norm minimization and are implemented iteratively, which can lead
to a reduced convergence rate and prolong the estimation delay.

We simplify the problem by transforming the problem into the
frequency domain. Hence, the pre-filter can be estimated in every
frequency bin in the HRFD independently:

G(k)B(k) = I, (11)

where G(k) ∈ CR×Q and B(k) ∈ CQ×R represent the frequency
responses of the pre-filters and the RIRs in frequency bin k, respec-
tively.

To shorten the pre-filters, we apply the approach proposed in
Section 2. Although the scaling ambiguity is not present in the cross-
talk-cancellation application (the RIRs are generally fully known),
the performance is generally not significantly affected. The short-
ened pre-filters can be obtained by substituting GT

r·(k) = Ĥ(k) and
G̃T

r·(k) = H̃(k) in (5) and (6) for each row of G(k) for every fre-
quency bin.

5. RESULTS

In this section, we discuss the experimental results for impulse re-
sponse shortening for both the BSS and cross-talk cancellation ap-
plications. In both cases, we first provide the setup and then the sim-
ulation results. We note that the main focus of this paper is to reduce
the system latency. Hence, we focus on the computational effort and
the separation performance in the performance evaluation.

5.1. BSS experimental setup

Three 10 second speech signals sampled at 16 kHz, which were ob-
tained from Stereo Audio Source Separation Evaluation Campaign
(SASSEC) [20], were used. We altered the activity period, such that,
for each source, certain periods existed where only one source was
active. This is not necessary but guarantees that the mixing matrices
can be correctly estimated using the sparsity-based method [12–14].
All the separations were conducted offline and computed by Matlab
R2015b on a PC having an Intel(R) Core(TM) i5-5200 CPU@2.20
GHz processor with 8GB random-access memory.

In the simulation, 24 microphones were used. The observations
were obtained by convolving the speech signals with the simulated
room impulse responses (RIRs). 24 × 3 RIRs with 1024 taps were
computed using the image-source method [21], where the micro-
phones and sources were randomly placed in a room with a size of
3 m× 3 m× 3 m. The reverberation time was 0.2 s.

Square-root of Hanning windows with 2048 taps (128 ms) and
512 taps (32 ms) were used in the high-resolution frequency domain
(HRFD) and in the low-resolution frequency domain (LRFD), re-
spectively. The windows were 50% overlapped. The HRFD mix-
ing matrices were estimated using both the ICA [10] and Modified-
TIFROM [13, 14] approaches. The explanation of the Modified-
TIFROM method can be found in [16]. The permutation ambiguity
was resolved using oracle information, so that the separation perfor-
mance was not affected by the permutation issue.

We examined five different approaches for each estimation
method. The stand-alone strategy identified the demixing matrices
in the LRFD directly while the crossband approach [16] utilized
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Table 1: Performance comparison between various approaches for BSS using simulated data.

Metrics ICA Modified-TIFROM
Stand-
alone

Crossband
[16]

Minimal
[3]

Mazur
[1]

Proposed Stand-
alone

Crossband
[16]

Minimal
[3]

Mazur
[1]

Proposed

SIR1 (dB) 9.70 16.47 13.62 8.24 18.32 5.31 16.24 14.62 17.77 18.72
SIR2 (dB) 10.90 12.42 15.64 13.18 16.20 20.14 22.31 22.87 19.25 25.45
SIR3 (dB) 10.69 19.13 13.66 15.74 15.60 12.82 18.44 16.04 21.07 21.26
SIRavg (dB) 10.43 16.01 14.31 12.38 16.71 12.76 18.99 17.84 19.36 21.81
Time (s) 5.39 66.71 20.52 158.35 20.37 5.01 63.45 18.13 152.72 18.24

the HRFD mixing matrices to compute the LRFD mixing filters
and designed the LRFD demixing operators. In addition to our
proposed approach, we tested two different impulse response short-
ening methods for comparison. The minimal approach shortens the
estimated RIRs by resolving the scaling ambiguity based on the
minimal distortion principle [3]. The method proposed by Mazur et.
al. [1] is described in Section 2. It obtains an optimal set of com-
plex scaling factors by approximating the time-domain shortened
filters to a desired pulse-like response. After shortening, the esti-
mated HRFD mixing filters were truncated as suggested in Section
3.2 and the demixing operators were designed based on the LRFD
representation of the truncated mixing filters.

5.2. BSS simulation results

The BSS EVAL toolbox [22] was used to compute the signal-to-
interference ratio (SIR) between the separated source and the origi-
nal source to indicate the source separation performance. A higher
score indicates better performance. We also compare the computa-
tion time of each method. The results of all the approaches are tabu-
lated in 1. SIRl represents the SIR of the lth while SIRavg indicates
the average value of the SIR values in each method.

The results show that the proposed approach achieves the high-
est average SIR value using both the ICA approach and the M-
TIFROM method. In terms of the computation time for the esti-
mation of the response, the proposed approach was slower than the
stand-alone method but is significantly faster than the state-of-the-art
procedures.

5.3. Cross-talk cancellation experimental setup

In the simulation, four loudspeakers and two microphones, acting as
listeners, were randomly located in a room with a size of 3m×3m×
3 m. The room impulse responses (RIRs) with 1024 taps were gen-
erated using the image source method [21], where the reverberation
time was 0.2 s. The sampling rate was 16 kHz.

We compare the proposed approach with [6]. The L2-norm was
chosen as a criterion to be minimized to facilitate the computation
in [6].

5.4. Cross-talk cancellation simulation results

The performance of the cross-talk cancellation is measured using a
direct signal to cross-talk ratio (DSCR) [23], which is the ratio of the
maximum direct response to the maximum cross-talk. High DSCR
value indicates good cross-talk cancellation performance. Fig. 1
shows the cross-talk cancellation performance of our approach. The
DSCR values between the direct response and the cross-talk for the
first signal and for the second signal were 17.81 dB and 17.59 dB,
respectively. The computational time was 0.10 s. For the approach
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Fig. 1: Cross-talk cancellation performance of the proposed ap-
proach, where Q = 4 and the pre-filter length was 128.
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Fig. 2: Performance comparison with different pre-filter length.

in [6] with the same setup, the DSCR values were 17.67 dB and
16.98 dB while the computational time was 3.26 s. Both methods
obtained similar DSCR values but our proposed method was signifi-
cantly faster than the method of [6].

In Fig. 2, we compare the performance of the two approaches
against the length of the pre-filters. The results show that [6] sur-
passes our proposed approach when the filter length is longer. This
is a consequence of the fact that the proposed method designs the
pre-filters in the frequency domain, resulting in the distortion asso-
ciated with circular convolution. Long filters make this distortion
more severe. However, our method is more efficient than [6] inde-
pendently of the length of the pre-filters.

6. CONCLUSION

In this paper, we presented a non-iterative impulse response short-
ening method. It aims to reduce the system latency, including both
the signal acquisition time and the processing time. The method
provides a simple and practical solution for real-time applications
involving system identification. The simulation results show that the
approach can be used to design both post-filters for the BSS applica-
tion and pre-filters for the cross-talk cancellation application. Future
work may include an investigation of the perception of the filtering
effect.
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