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ABSTRACT

We previously introduced a framework called time-domain spec-
trogram factorization (TSF), which realizes nonnegative matrix
factorization (NMF)-like source separation in the time domain.
This framework is particularly noteworthy in that, while maintain-
ing the ability of NMF to obtain a parts-based representation of
magnitude spectra, it allows us to (i) circumvent the commonly
made assumption with the NMF approach that the magnitude spec-
tra of source components are additive and (ii) take account of the
interdependence of the phase/amplitude components at different
time-frequency points. In particular, the second factor has been
overlooked despite its potential importance. Our previous study
revealed that the conventional TSF algorithm was relatively slow
due to large matrix inversions, and the early stopping of the algo-
rithm often resulted in poor separation accuracy. To overcome this
problem, this paper presents an iterative TSF solver using projected
gradient updates. Simulation results show that the proposed TSF
approach yields higher source separation performance than NMF
and the other variants including the original TSF.

Index Terms— Audio source separation, non-negative matrix
factorization(NMF), projected gradient method

1. INTRODUCTION

Many sound recordings are mixtures of multiple sound sources. Au-
dio source separation, i.e., the inverse operation of the mixing pro-
cess, has long been a formidable challenge in the field of audio signal
processing [1].

For speech enhancement tasks, i.e., audio source separation
tasks where the mixture is given by speech and noise, deep neu-
ral network-based approaches have recently proved powerful [2].
A recently proposed deep-network-based approach [3] has further
made it possible to deal with “cocktail party” scenarios where the
interference is also speech. Although these methods have been
shown to work well when a large number of training samples are
available, the supervised/semi-supervised non-negative matrix fac-
torization (NMF) approach [4–6] still remains attractive for audio
source separation tasks particularly when only a limited number of
training data are available. With the NMF approach, the magnitude
(or power) spectrogram of a mixture signal, represented as a non-
negative matrix Y , is factorized into a product of two non-negative
matrices H and U . This can be interpreted as approximating the
observed spectra at each time frame as a linear sum of basis spectra
scaled by time-varying amplitudes, and amounts to approximating
the observed spectrogram as the sum of rank-1 spectrograms. The
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sequence of observed spectra can be approximated reasonably well
when each basis spectrum expresses the spectrum of an underlying
audio event that occurs frequently over the entire observed range.
Thus, with music signals, each basis spectrum usually becomes
the spectrum of a frequently used pitch in the music piece. In a
supervised/semi-supervised setting, NMF is first applied to train the
basis spectra of each sound source using the individually recorded
audio samples. At test time, NMF is applied to the spectrogram of a
test mixture signal, where the subsets of the basis spectra are fixed
at the pretrained spectra. In this way, the signals of the underlying
source components can be separated out using the Wiener filter
obtained with the estimated spectrograms of the individual sources.

Although the NMF approach has been shown to be successful,
one limitation is that it assumes the additivity of magnitude (or
power) spectra, which holds only approximately, and does not take
account of phase information. To overcome this limitation, we have
previously proposed a framework called complex NMF [7], where
the complex spectrum observed at each time frame is modeled as
the sum of components, each of which is described by the multi-
plication of a static basis spectrum, a time-varying amplitude and
a time-varying phase spectrum. With a similar motivation, Parry
et al. [8] and Févotte et al. [9] have independently proposed a
generative model of the complex spectrogram obtained with the
short-time Fourier transform (STFT) of a mixture signal, where
the power spectrogram of each component is modeled as a rank-1
matrix and the phase spectrogram is treated as uniformly distributed
latent variables. It can be shown that when each element of the com-
plex spectrogram is assumed to independently follow a zero-mean
complex normal distribution, the maximum likelihood estimation
of the model parameters amounts to fitting the NMF model to an
observed power spectrogram using the Itakura-Saito (IS) divergence
as a goodness-of-fit criterion. This approach is called IS-NMF. A
similar kind of generative model using a complex Cauchy distri-
bution instead of a complex normal distribution has recently been
proposed [10].

Although these phase-aware NMF variants treat each element
of the phase spectrogram as an independent parameter (or latent
variable), in fact the phases of time-frequency components are con-
strained and dependent on each other. This is because the spectro-
grams obtained with typical time-frequency transforms (such as the
STFT and the wavelet transform) are redundant representations of
a signal. For example, the STFT spectrogram is computed by con-
catenating the Fourier transforms of overlapping short-time frames
of the signal. Hence, all the elements of the STFT spectrogram must
satisfy a certain condition to ensure that the waveforms within the
overlapping segment of consecutive frames are consistent [11]. The
shortcomings of the complex NMF and IS-NMF frameworks are that
they fail to take account of this kind of redundancy. Moreover, the
time domain signal converted from the estimated complex spectro-
gram is in general not “optimal” unless the redundancy is taken into
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Fig. 1. Illustration of time-frequency basis functions.

account, since the complex spectrogram of the converted signal is no
longer the same as the original complex spectrogram.

To exploit the intrinsically redundant structure of spectro-
grams explicitly, we previously introduced a framework called
time-domain spectrogram factorization (TSF) [12], which realizes
NMF-like source separation in the time domain. This framework
is particularly noteworthy in that, while maintaining the ability to
obtain a parts-based representation of magnitude spectra, it directly
decomposes a time-domain signal into each underlying component.
Postprocessing to obtain a time domain signal from the estimated
spectrogram as typically required in the conventional frameworks
is implicitly involved in the optimization process. However, our
previous study revealed that the conventional TSF algorithm was
relatively slow due to large matrix inversions, and the early stopping
of the algorithm often resulted in poor separation accuracy. This
paper proposes an iterative algorithm leveraging the projected gra-
dient method to solve the TSF optimization problem in a tractable
manner.

2. PROBLEM FORMULATION

2.1. Objective function

We denote an observed signal at time n by y[n], and the signal of the
entire period by y = [y[1], . . . , y[N ]]T ∈ RN , where (·)T stands for
the vector (matrix) transpose. While the NMF approach decomposes
an observed magnitude spectrogram into the sum of rank-1 spectro-
grams, TSF decomposes y into the sum of L signal components:

y =

L∑
l=1

sl, (1)

such that the magnitude spectrogram of each component is as close
to a rank-1 structure as possible. Here, we use ψk,m ∈ CN to
denote a basis function for the time-frequency transform, where k
and m are the frequency and time indices, respectively. By using
ψk,m, the magnitude spectrogram of sl can be written as |ψH

k,msl|,
where (·)H stands for the Hermitian transpose of a vector. Hence, we
formulate TSF as the optimization problem of minimizing

J (θ):=
∑
l,k,m

1

βl,k,m
(|ψH

k,msl|−Hk,lUl,m)2+2λ
∑
l,m

|Ul,m|p ,

subject to y =
∑
l

sl, (2)

with respect to θ = {H,U ,S,β} where H = {Hk,l},U =
{Ul,m}, S = {sl} and β = {βl,k,m} with βl,k,m > 0 satisfy-
ing
∑

l βl,k,m = 1. This problem can be seen as a weighted least
squares problem where βl,k,m is the reciprocal of the weight. The

importance of this weight parameter will be shown later. The first
term of J (θ) becomes 0 when the magnitude spectrograms of all
the S have exactly rank-1 structures. It is important to note that
as with complex NMF, this model allows the components to cancel
each other out, and therefore some constraint is needed to induce
the sparsity of U . The second term of J (θ) is introduced for this
purpose, which we define as the ℓp norm, where λ > 0 weighs
the importance of the sparsity cost relative to the fitting cost. For
0 < p < 2, it promotes sparsity if the norm of U is bounded. To
bound U , we assume ∑

k

H2
k,l = 1. (3)

2.2. Majorization-minimization algorithm

Let F (θ) be a cost function that we wish to minimize with respect
to θ. F+(θ, θ̄) is defined as an auxiliary function for F (θ) if it
satisfies

F (θ) = min
θ̄

F+(θ, θ̄). (4)

Here, we call θ̄ an auxiliary variable.

Theorem 1 ([13]). F (θ) is non-increasing under the following up-
dates:

θ̄ ← argmin
θ̄

F+(θ, θ̄), (5)

θ ← argmin
θ

F+(θ, θ̄). (6)

Note that the convergence of the algorithm is still guaranteed as
long as F+ is decreased with respect to θ at each iteration. Thus,
F+ does not need to be exactly minimized.

2.3. Auxiliary function of J

One difficulty as regards the current optimization problem comes
from the nonsmoothness of |ψH

k,msl| and |Ul,m|p for 0 < p < 1
in J . We can design an auxiliary function for J with a convenient
form

J+(θ, θ̄) =
∑
l,k,m

1

βl,k,m

∣∣ψH
k,msl −Hk,lUl,mcl,k,m

∣∣2
+ λ

∑
l,m

[
p|Vl,m|p−2U2

l,m + (2− p)|Vl,m|p
]
, (7)

by using the inequalities (A.30) and (A.31) given in the appendix,
where θ̄ = {c,V } with c = {cl,k,m} and V = {Vl,m}. A min-
imizer of the auxiliary function with respect to C and V has the
following closed-form expression:

cl,k,m = ψH
k,msl/|ψ

H
k,msl|, (8)

Vl,m = Ul,m. (9)

3. OPTIMIZATION WITH PROJECTED GRADIENT

By using the method of Lagrange multipliers, we obtain the update
rule for sl as

sl = Ψ−1
l (dl − µ), (10)
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where

Ψl =
∑
k,m

2Re[ψk,mψ
H
k,m]

βl,k,m
, (11)

dl =
∑
k,m

2Re[cl,k,mψk,m]Hk,lUl,m

βl,k,m
, (12)

µ =
(∑

l

Ψl

)−1(∑
l

Ψ−1
l dl − y

)
. (13)

The conventional TSF algorithm uses (10) as the update rule for sl.
As can be seen from the above, one problem with the conventional
algorithm is that it involves large matrix inversions, resulting in a
very slow algorithm. In [12], we showed that in a particular case
where β1,k,m = · · · = βL,k,m (i.e., ∀l, βl,k,m = 1/L), Ψl be-
comes an identity matrix, which means that the update rule of sl can
be computed without matrix inversions. However, it transpired that
this β setting results in a poor separation accuracy. We show in this
section that using the projected gradient method to update sl allows
us to sidestep these computations and leads to a reasonably efficient
optimization algorithm.

3.1. Update rule for sl

In this subsection, we solely consider the update for sl and fix all
the other variables included in θ and θ̄. We therefore regard J+ as
a function of sl, and denote it by J+(sl). The partial derivative of
J+ with respect to sl is given as

∇slJ
+(sl) = Ψlsl − dl. (14)

Each term of (14) can be computed efficiently. Indeed, when ψk,m

is defined as the STFT basis function, ψH
k,msl represents the (k,m)

element of the STFT of sl. Since the operator
∑

k,m Re[ψk,m·]
in (11) corresponds to the inverse STFT process, Ψlsl can be
obtained by computing the inverse STFT of a vector containing
2ψH

k,msl/βl,k,m. Analogously, dl in (12) can be obtained by com-
puting the inverse STFT of a vector containing 2Hk,lUl,mcl,k,m
/βl,k,m. We can thus efficiently update sl using the gradient-based
update rule

sl ← sl − γ∇slJ
+(sl), (15)

where γ ∈ (0, 2/κ) is step size. Here, κ > 0 is the Lipschitz con-
stant of the gradient operator ∇slJ

+, and is given by the largest
eigenvalue of the matrix Ψl. For the sake of computational effi-
ciency, we use the following step size:

γ :=
2

ρ
∈ (0, 2/κ), (16)

ρ :=
∑
l

tr (Ψl) =
∑
l,n

∑
k,m

2{w(n− αm)}2

βl,k,m
, (17)

where w(n) is the window function and αm is the hop size of the
STFT.

Define

s̃ :=


s1

...
sL

 ∈ RLN , (18)

G := [IN · · · IN ] ∈ RN×LN , (19)

where IN is the N × N identity matrix. The linear constraint y =

∑
l sl can then be written equivalently as y = Gs̃. Also define

V :=
{
s̃ ∈ RLN | Gs̃ = y

}
. (20)

Then, the projection onto the affine subspace V is given by [14]

PV(s̃) = s̃−GT(GGT)−1(Gs̃− y). (21)

By consideringGGT = LIN and

GTG =


IN IN ... IN

IN IN ... IN

...
IN IN ... IN

 ∈ RLN×LN , (22)

we obtain

[PV(s̃)]l = sl −
1

L

(
L∑

l′=1

sl′ − y

)
. (23)

Accordingly, we seek to minimize J+ with respect to sl by alter-
nately performing (15) and (23). In fact, ρ gives the upper bound
of κ, and this ensures γ ∈ (0, 2/κ) so that the projected gradient
algorithm converge to a minimizer of J+ under the linear constraint
[15].

3.2. Summary of proposed algorithm

By setting the partial derivative of J+ with respect to each element
of U at zero, the update rule for U is obtained as

Ul,m =

∑
k Hk,l|ψH

k,msl|/βl,k,m∑
k H

2
k,l/βl,k,m + λp|Vl,m|p−2

. (24)

Similarly, we obtain the update rules for H and β by using the
method of Lagrange multipliers as follows:

Hk,l =

∑
m Ul,m|ψH

k,msl|/βl,k,m√∑
k(
∑

m Ul,m|ψH
k,msl|/βl,k,m)2

, (25)

βl,k,m =

∣∣|ψH
k,msl| −Hk,lUl,m

∣∣∑
l

∣∣|ψH
k,msl| −Hk,lUl,m

∣∣ . (26)

Overall, the proposed iterative algorithm is summarized as follows.

1. InitializeH , U and S.
2. Update c and V using (8), (9).
3. Update S and γ using (14), (16)–(17), (23).

for t = 1 : iteration
s
(t+1)
l = PV

(
s
(t)
l − γ∇slJ

+(s
(t)
l )
)

end
4. Update U ,H and β using (24)–(26).

4. RELATION TO COMPLEX NMF

It is interesting to note that the auxiliary function J+ has a similar
form to that of complex NMF [7]. The aim of complex NMF is
to approximate an observed complex spectrogram Yk,m using the
following model:

Yk,m ≈
∑
l

Hk,lUl,mejϕl,k,m , (27)

where ϕl,k,m denotes the phase spectrogram of the l-th signal com-
ponent. In [7], the cost function that must be minimized with respect
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Fig. 2. SNR improvements.

to Hk,l, Ul,m and ϕl,k,m is defined as

I(θ) =
∑
k,m

∣∣∣Yk,m −
∑
l

Hk,lUl,mejϕl,k,m

∣∣∣2 + 2λ
∑
l,m

|Ul,m|p ,

(28)

with θ = {H,U ,ϕ} where H = {Hk,l},U = {Ul,m} and ϕ =
{ϕl,k,m}. It can be shown that

I+(θ, θ̄) =
∑
l,k,m

1

βl,k,m

∣∣Xl,k,m −Hk,lUl,mejϕl,k,m
∣∣2

+ λ
∑
l,m

{
p|Vl,m|p−2U2

l,m + (2− p)|Vl,m|p
}
, (29)

is an auxiliary function for I, where θ̄ = {β,X}, β = {βl,k,m}
and X = {Xl,m} are the auxiliary variables. Here, βl,k,m can be
any positive number satisfying

∑
l βl,k,m = 1, and Xl,k,m must

satisfy Yk,m =
∑

l Xl,k,m. Xl,k,m can be viewed as an estimate of
the complex spectrogram of the l-th signal component.

By comparing (7) and (29), we see that Xl,k,m and ejϕl,k,m in
the auxiliary function of the complex NMF objective are analogous
to sl and cl,k,m in that of the present TSF objective, respectively.
One drawback with complex NMF is that Xl,k,m is not guaranteed to
satisfy the explicit condition that complex spectrograms must satisfy.
This implies that the complex NMF algorithm is designed to search
for optimal parameters in an unnecessarily large solution space. By
contrast, the present algorithm always ensures that the estimate of
the complex spectrogram of the l-th latent component ψH

k,msl is
associated with a time-domain signal sl, keeping the search within
an appropriate solution space.

5. EXPERIMENTAL RESULTS

We quantitatively compared the source separation performance of
the proposed time-domain spectrogram factorization (TSF) by con-
ducting supervised source separation experiments, original TSF
[12], complex NMF (CNMF) [7], and NMF using the Euclidean
distance (EUC), Kullback-Leibler (KL) divergence and Itakura-
Saito (IS) divergence by conducting supervised source separation
experiments. The original TSF minimizes (2) in a particular case
where β1,k,m = · · · = βL,k,m (i.e., ∀l, βl,k,m = 1/L). We used
professionally produced music recordings from the SiSEC 2013
database, available at https://sisec.wiki.irisa.fr/, as the experimental
data. Each recording was a mixture of multiple tracks, each of which
was produced by a single instrument or singer. The tracks were also
available separately. We performed 3-fold cross validation. We
partitioned each recording into three segments, used one segment
as the test data and the other two segments as the training data, re-
peated signal-to-noise (SNR) evaluations three times with different

test segments, and take the average SNR improvement obtained with
the three repeated rounds. With all these methods, the basis spectra
were pretrained using the individual tracks of the training data, and
then source separation was performed on the test data. All the audio
samples were monaural and sampled at 22.05kHz. The STFT was
computed using a square-root Hanning window that was 32 ms long
with a 16 ms overlap. With both methods, 6 basis spectra were
assigned to each track. Thus, for 5-track recordings, a total of 30
basis spectra were used for the separation. Fig. 2 shows the SNR
improvements after the separations with the six methods. These
results show that proposed TSF performed better than NMF, CNMF
and original TSF.

6. CONCLUSION

This paper presented an efficient TSF algorithm that performs source
separation in the time domain. A noteworthy advantage of TSF is
that, while preserving the desirable property of NMF, it exploits
(i) the additive nature of time-domain signals and (ii) the inter-
dependence of the phase/amplitude components at different time-
frequency points. The proposed iterative algorithm was built based
on a majorization-minimization scheme leveraging the projected
gradient method. Simulation results showed that the proposed TSF
algorithm yielded better source separation performance than NMF.

Appendix A. INEQUALITIES

We summarize the inequalities that are used to design the auxiliary
function.
Lemma 1. For any complex number z and any complex number c
satisfying |c| = 1, it holds that

− |z| ≤ −Re[c∗z]. (A.30)

Equality holds when c = z/ |z|.
Lemma 2. When 0 < p < 2, for any real or complex number x, it
holds that

2 |x|2 ≤ p |v|p−2 |x|2 + 2− p |v|p . (A.31)

Equality holds when v = x.
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