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ABSTRACT
Unknown global permutation of the separated sources, time-
varying source activity and under determination are com-
mon problems affecting on-line Independent Vector Analy-
sis when applied to real-world speech enhancement. In this
work we propose to extend the signal model of IVA by
introducing additional supervising components. Pilot signals,
which are dependent on the sources, are injected in the
multidimensional source representation and act as a prior
knowledge. The resulting adaptation still maximizes the mul-
tivariate source independence, while simultaneously forcing
the estimation of sources dependent on the pilot components.
It is also shown as the S-IVA is a generalization over the
previously proposed weighted Natural Gradient. Numerical
evaluations shows the effectiveness of the proposed method
in challenging real-world applications.

Index Terms— independent vector analysis, source sep-
aration, independent component analysis, speech enhance-
ment.

I. INTRODUCTION
Unsupervised convolutive spatial source separation is one

of the most challenging problem related to acoustic source
enhancement. Among most recent methods, spatial models
and linear demixing through Independent Component Analy-
sis are the most popular approaches [1], [2], [3]. Frequency-
domain ICA methods are often preferred due to the reduced
complexity and improved convergence speed [4], [5]. In the
frequency domain, the separation is carried out in each sub-
band independently and a proper alignment is then needed
to solve the well-known ”permutation problem”. Several ap-
proaches have been proposed in literature to solve such a
problem. Independent Vector Analysis (IVA) has shown to
be a very effective yet theoretically sound solution [6]. Dif-
ferently from ICA, IVA uses a multivariate source model
in order to jointly estimate the separating matrix for all the
frequency components. On-line implementations of IVA pro-
cess continuous streams of audio signals in order to extract
a given target source for real-time audio applications, such

1The work of Zbyněk Koldovský was partially supported by California
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as VoIP or ASR [7]. However, the effectiveness of standard
IVA in real-world applications is limited by several issues.
To mention a few:

• While IVA is theoretically ”permutation free” across
the frequencies, it does not solve the ambiguity order
of the full-band output signals (i.e the ”global permu-
tation”). Its solution is not a trivial task in time-varying
conditions as the output order might change over time.

• In IVA it is assumed that the mixture is a linear com-
bination of a known number of sources. However, in
real-world, the source activity varies over time. During
pauses of the target source, interfering sources could
leak through the output associated to the target.

To overcome these limitations, geometrical constraints have
been proposed in the past [8]. However, these constraints
make IVA closer to adaptive beamforming [9] or to geo-
metrically constrained ICA [10] and partially contradicts the
objective of IVA, i.e. to separate multivariate independent
sources without any explicit assumption on the mixing sys-
tem [11]. Indeed, the mixing system cannot be determinis-
tically modeled in far-field and in high reverberation with
a simplified free-field geometrical model. Furthermore, in
real-world, the target source and the noise directions can
be very similar. As a solution for the mentioned issues, we
propose to extend the multidimensional source model of IVA
by adding pilot components statistically dependent on the
target and noise sources. The injected pilot signals act as a
prior knowledge enforcing the natural gradient to converge
in a limited solution space, without imposing any explicit
constraint to the demixing system.

II. SIGNAL MODEL
N source signals are assumed to be recorded by an array

of M elements. Let Sk
n and Xk

m be the STFT coefficients
obtained for the k-th frequency bin for the n-th source and
m-th mixture signal, respectively. For convenience of nota-
tion we indicate the source vector with Sk = [Sk

1 · · ·Sk
N ]T ,

and the mixtures Xk = [Xk
1 · · ·Xk

M ]T , which can be then
modeled as

Xk = HkSk +Nk, (1)

where Nk indicates the vector of generic background noise
signals Nk = [Nk

1 , · · · , Nk
M ]T and Hk indicates the mixing
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matrix at bin k. Assuming N = M , the objective of IVA is
to estimate a set of demixing matrices Wk = {W k

nm}, ∀k =
1 · · ·K (where K is the maximum number of bins), which
jointly recover independent multidimensional sources Yn =
[Y 1

n , · · · , Y K
n ] through

Y k
n =

M∑
m=1

W k
nmXk

m, (2)

up to a scaling ambiguity, which can subsequently be re-
solved by applying the Minimal Distortion Principle [12] to
each matrix Wk.

A typical way to model the sources is with multivariate
super Gaussian source prior distributions. The most popular
one for its simplicity is the Laplacian distribution:

an = [a1n, · · · , aKn ], fs(an) = α exp

−

√√√√ K∑
k=1

|akn|2

 (3)

where akn indicates the generic k-th component for the source
n. As objective, the log Maximum Likelihood (ML) function
is defined as [6]:

L =
K∑

k=1

log |detWk|+
N∑

n=1

E[log fs(Yn)] (4)

where the expectation E[·] is approximated with the average
over the frames l. By taking the derivatives of (4) with
respect to W k

nm and appling the natural gradient modification
to maximize (4) we obtain the rule:

Wk
new = Wk

old + η∆Wk

∆W k
nm = (Inm − E[ϕk(Yn)(Y

k
m)∗])W k

nm (5)

where Inm indicates the nm-th element of the identity matrix
and the score function ϕ(·) derived from (3) is written as

ϕk(Yn) =
Y k
n√∑K

k=1 |Y k
n |2

. (6)

The denominator on the right-hand side of (6) corresponds
to a factor that binds all the frequency bins together. Without
this factor, the decorrelation of the outputs will be achieved
in each bins separately but the full wide-band source would
be affected by the permutation problem. By following this
observation, we modify the adaptation to enforce another
level of dependence, namely, between the separated compo-
nents and pilot signals which are designed to capture high-
level spectral or spatial differences between the target and
the interfering sources.

III. SUPERVISED IVA
We extend the multivariate model in (3), by injecting and

additional ”Pilot” components Pn as

ãn = [a1n, · · · , aKn , γPn],

fs(ãn) = α exp

−

√√√√ K∑
k=1

|akn|2 + γ2|Pn|2

 , (7)

where γ is an hyperparameter controlling the influence of
the ”Pilots”. By indicating with Ỹn = [Y 1

n , · · · , Y K
n , γPn]

the extended observation vector and by noting that γPn is
independent on W k

nm, the ML update is derived by using (7)
and (4). Thus, the new score function is obtained as:

ϕk(Ỹn) =
Y k
n√∑K

k=1 |Y k
n |2 + γ2|Pn|2

. (8)

By controlling γ we can trade the importance of the mu-
tual frequency self-dependence versus the dependence on the
pilot component Pn. In the extreme cases, if γ is set to a
small value the standard IVA is realized and thus the order of
recovered sources would depend only on the initialization of
Wk. On the other hand, if γ is chosen to be a large value the
alignment of the frequency components is forced to follow
the one of the pilot signals Pn.

The component Pn needs to be designed in order to be
statistically dependent on the n-th source and can be defined
as follows

Pn = pn(l)

√√√√ K∑
k=1

|Xk
n(l)|2 (9)

where pn(l) is the posterior probability to observe the n-
th source at the STFT frame l. The posteriors can be esti-
mated by learning the distributions of discriminative spec-
tral or spatial features computed from the input mixture
{Xk(l)}l,k∈S , where S is a subset of frame and frequency
indexes. We indicate with V (l) the vector of the features
V (l) = [V1(l) · · ·VF (l)] and we define the source classes,
”n=1” (identifying the ”desired” target source), ”n > 1”
(identifying the ”noise” sources). The parameters of a su-
pervised classifier are learned beforehand from training data
in order to produce the posteriors pn(l) associated to each
class. Any sort of hard or soft classifier can be used, such as
Gaussian Mixture Models, SVM or discriminatively trained
Deep Neural Network [13].

IV. CONNECTION BETWEEN S-IVA AND
WEIGHTED NATURAL GRADIENT

First of all eq. (8) can be rewritten as

wn =
1√∑K

k=1 |Y k
n |2 + γ2|Pn|2

, ϕk(Ỹn) = wnY
k
n . (10)

We then consider the equivalent Natural Gradient adaptation
rule which updates the inverse of Wk [14], Hk = (Wk)−1.

Hk
new = Hk

old − η∆Hk

∆Hk
nm = Hk

nm(Inm − E[ϕk(Ỹn)(Y
k
m)∗]) (11)
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In the on-line adaptation case the expectation is approxi-
mated with the instantaneous covariance ϕ̃k(Yn(l))(Y

k
m(l))∗.

The gradient can be then approximated as

Rk
nm = (Inm − wn(l)Y

k
n (l)Y k

m(l)∗)

∆Hk
nm = Hk

nm Rk
nm. (12)

Similarly, the adaptation rule of the weighted Natural Gra-
dient (wNG) in [15] (after imposing the score function of
ICA to be ϕ(x) = x) is written as

Rk
nm = (Inm − Y k

n (l)Y k
m(l)∗)ŵk

m(l)

∆Hk
nm = Hk

nm Rk
nm (13)

where ŵm(l) is a weight which must be proportional to the
probability to observe the m-th source at the frequency k. If
the weight ŵk

m(l) is set to be identical for each k, its effect
becomes equivalent to pn(l) in the pilot signal. It can be
noted that ŵn(l) is inverse proportional to the power of the
n-th source. If we set the diagonal element of Rnm to be 0 in
order to realize a non-holonomic update, i.e. which does not
depend on the scaling of the estimated output components,
eq. (12) and (13) can be considered equivalent, i.e. the update
of the m-th column of ∆Hnm is proportional to the activity
of the m-th source. Therefore, S-IVA can be considered a
generalization of the wNG as the denominator in (8) also
depends on the power of the recursively estimated separated
source components.

The proposed method can be also related to the work in
[16], where prior knowledge about the source power varia-
tion is considered. However, the pilot signal defined through
(9) is only a special case, which is convenient for showing
the connection between the weighted ICA and S-IVA. As the
pilot signal is only required to be statistically dependent on
the source components, the concept is far more general com-
pared to [16]. For example, information from heterogeneous
modalities (e.g. video, audio, EEG, etc.) can be integrated
by using one or multiple pilots.

V. APPLICATION EXAMPLES
In order to better motivate the proposed approach, we

present in this section two examples of S-IVA for the specific
case of M = 2. First, by following the conclusions in section
IV we heuristically modify eq. (8) as

ϕk[Ỹn] =
Y k
n√

(1− β)
∑K

k=1 |Y k
n |2 + β|Pn|2

(14)

where the parameter β is set in the range between 0 and 1 in
order to transition from a pure IVA to a wNG like adaptation.
An on-line S-IVA implementation is then realized by updat-
ing the matrices at each frame l through the instantaneous
gradient as

Yk(l) = Wk(l)Xk(l)

∆W k
nm(l) = (Inm − ϕk[Ỹn(l)]Y

k
m(l)∗)W k

nm(l)

Wk(l + 1) = Wk(l) + η∆Wk(l) (15)

The scaling normalization in [17] is adopted to avoid di-
vergence and improve general convergence speed. The sig-
nal mixtures are transformed in their corresponding time-
frequency representation through Short-time Fourier Trans-
form with Hanning windows of 4096 points overlapping for
the 75%. After separations, the images of the target source
at each microphone are recovered through MDP and signals
are transformed back to time-domain through overlap-and-
add. As performance metrics, SNRi and SDRi are considered
(namely, SNR and SDR improvements).

V-A. Test1: far-field angular enhancement
In real-world applications we might be interested in

recovering any source located in a given angular region,
still without imposing any explicit geometrical constraint
to the estimated demixing filters, which is necessary for
far-field applications. We define then the feature V (l) =
[θ({Xk(l)}l,k∈S)] where θ(·) represents a wide-band DOA
estimator computed with a subset of frames and frequencies.
A training dataset can be defined with 1) recordings of noisy
target speech in the angular region of interest 2) recordings
of the noise only segments. Thus, a classifier to produce
p1(l) can be trained offline and tested at run-time with the
incoming data. In absence of data, a simplified method is to
approximate the posteriors as

p1(l) = 1 if |V (l)−O| < ∆O

= 0 otherwise (16)

where O and ∆O defines the center and width of the desired
target angular region. In this case p2(l) is derived as 1−p1(l)
and the pilot components are computed as in (9).

In order to validate this use case, a dataset is generated
by combining speech signals recorded in a predefined tar-
get region together with interfering speech recorded in ran-
dom locations but outside the target region. Sources were
recorded at fs = 16kHz, in a room of size 5x5x2.5 meters
with T60=300ms with two microphones spaced of 0.2m and
at a distance of 2 meters from the center of the array. The
evaluation dataset is generated by 100 random combinations
among different source signals and locations. As DOA esti-
mator a frequency-domain spatial coherence function is used
[18]. Figure 1 shows the mean and standard deviation for
both SNRi and SDRi with varying the hyper parameter β.
It can be noted that when β is set to 0 the pure IVA is
not able to recover the desired source consistently over all
the test files (see large standard deviation). Indeed, without
any supervision, during the on-line learning the same output
signal might contain segments of both the sources. As we
increase β, the pilot components stabilizes the focus of the
filters eventually resolving the time alignment and increasing
the overall performance. When the adaptation is transformed
to a pure wNG (β = 1), the performance is still acceptable
which is in line with previous results obtained on a similar
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Fig. 1. Performance for the angular focus

task [19]. However, we can note that the performance peak
is reached for a value of around β = 0.35 which indicates
that a certain degree of freedom in the IVA update is still
important to achieve an optimal result.

V-B. Test2: transient noise cancellation
A different application can be the separation of speech

from a source of different spectral nature independently on
their spatial location. To this regard we need to define a
feature (or a set of features) V(l) which captures the spec-
tral characteristics discriminating speech from noise. While,
data-based machine-learning approaches can be used such as
DNN [13], ad-hoc features-based classification can be suf-
ficient for certain applications. For example, transient noise
such as keyboard typing noise can be discriminated from
speech through a simple measure of short-time transient-
ness. For each subband the last L̂ frames can be stored in a
linear buffer

Bk
m(l) = [Xk

m(l), · · · , Xk
m(l − L̂+ 1)]. (17)

A likelihood measure of peakedness can be computed from
the buffered frames as

akm(l) = median[|Bk
m(l)|], bkm(l) = max[|Bk

m(l)|] (18)

V (l) = max
m

∑
k

|bki (l)− aki (l)|
bki (l)

(19)

where the median and max operator are applied to the mag-
nitude of the elements in the buffer Bk

m(l). Binary posteri-
ors pn(l) can be determined from deterministic thresholding
of V (l) or, if enough training data is available, through a
supervised data-based classifier. To evaluate S-IVA in these
scenario, we collected several recordings of a keyboard noise
from a commercial laptop added to speech. Because of the
geometrical layout of the laptop both the speech and the
keyboard noise propagates from a similar angular direction.
Therefore, any geometrical constraint would not help in sta-
bilizing the focus on the desired source. As in the previous
experiment, Figure 2 shows the performance of S-IVA by
varying the parameters β. Also in this case the injection of
the supervising component stabilizes the performance mak-
ing it consistently good across multiple tests.
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Fig. 2. Performance for the transient noise reduction

Test1 IVA C-IVA S-IVA SC-IVA
SNRi 4.61 (11.75) 12.49 (2.10) 13.89 (1.52) 12.87 (1.59)
SDRi 6.28 (5.00) 8.85 (2.07) 10.39 (1.86) 9.11 (1.96)

Test2 IVA C-IVA S-IVA SC-IVA
SNRi 3.73 (12.60) 4.54 (1.36) 12.91 (1.66) 6.02 (0.94)
SDRi 6.47 (4.92) 3.67 (0.66) 9.88 (1.13) 4.12 (0.60)

Table I. Mean and (standard deviation) SNRi and SDRi
performance with different IVA implementations

V-C. Performance comparison
In table I we report the performance of 1) unconstrained

IVA, 2) the proposed S-IVA with β tuned for best SDRi, 3)
geometrically constrained IVA (C-IVA) where the penalty
factor is tuned to maximize the SDRi, and 4) S-IVA geo-
metricaly constrained as in C-IVA (SC-IVA). We can note
that in Test1, where the target source is in the center but
the interferer is in a different (random) location, adding
the geometrical constraint to IVA helps stabilizing the per-
formance and reduce the variance. However, performance
are still limited compared to S-IVA because the imposed
geometrical constraint makes the solution suboptimal due to
the presence of reverberation. In Test2, the limits of the ge-
ometrical constraint become even more evident as the noise
and the target speech generates from a similar direction.

VI. CONCLUSIONS

In this work we have presented an extension of the signal
model of IVA in order to inject in the adaptation a prior
knowledge through a pilot signal. The pilot signal has the
effect of soft bounding the solution space in order to reduce
known ambiguities, thus improving overall performance and
robustness. It is shown that without explicit constraints to
the demixing system it is possible to have a consistent en-
hancement of a specific target source in difficult scenarios,
such as in high reverberation and when sources propagates
from a similar direction. Experimental results prove that the
proposed approach is appealing for real-world applications,
such as far-field angular speech enhancement and transient
noise cancellation.

In future work we will extend the pilot signals to add mul-
timodal prior knowledge for the supervision, e.g. by includ-
ing information related to video and EEG source activity.
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