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ABSTRACT

Accurate interpolation of the array manifold is an important first

step for the acoustic simulation of rapidly moving microphone ar-

rays. Spherical harmonic domain interpolation has been proposed

and well studied in the context of head-related transfer functions but

has focussed on perceptual, rather than numerical, accuracy. In this

paper we analyze the effect of measurement noise on spatial aliasing.

Based on this analysis we propose a method for selecting the trunca-

tion orders for the forward and reverse spherical Fourier transforms

given only the noisy samples in such a way that the interpolation

error is minimized. The proposed method achieves up to 1.7 dB im-

provement over the baseline approach.

Index Terms— interpolation, HRTF, array manifold, spherical

harmonics, microphone array

1. INTRODUCTION

For many years multichannel acoustic signal processing has targeted

scenarios in which the microphone arrays are static or move suffi-

ciently slowly that a short-term stationary assumption can be used.

However, for applications such as robot audition and hearing aids an

assumption of stationarity is not normally satisfied in practice. To

validate existing algorithms and to aid the development of new al-

gorithms which do not assume stationarity, requires simulation tools

that can accurately predict the signals received by moving micro-

phone arrays.

Assuming the incident sound field can be expressed as a

weighted sum of plane waves impinging on the array from dif-

ferent Directions-of-Arrival (DOAs), we require the response of the

array to a unit amplitude plane wave from each DOA, that is the array

manifold or steering vector. Under idealized conditions, the array

manifold for some very simple array geometries has an analytical

solution. In practice, array manifolds must be measured for a finite

number of DOAs, a process known as sampling on the sphere, and

interpolated to the required DOAs. Generalizing the weighted sum of

plane waves model of a sound field to a plane-wave density [1, 2],

it becomes more convenient to express both the array manifold and

the sound field as a Spherical Harmonic (SH) expansion [3, 4]. In

this way the Wigner-D rotation matrices can be used to rotate the

array manifold with respect to the sound field [5], and such rotation

can vary rapidly with time. The interpolation of the array manifold

is then achieved implicitly.

The problem we seek to address is how to obtain the SH do-

main representation of a measured array manifold such that it can

be most accurately interpolated. The SH domain representation of
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Head-related Transfer Functions (HRTFs) in particular has been stud-

ied quite extensively [6–12]. However, most studies have analyzed

the interpolation accuracy from the perspective of human sound lo-

calization cues, and have consequently focussed only on the magni-

tude spectrum or indeed the perceived position. Some studies have

proposed methods to make interpolation robust to missing data in the

HRTF measurements [8,9]. This offers some insight into our scenario

but cannot be compared directly since we assume that the sampling

grid is well distributed over the full sphere. In [13], the SH expan-

sion included regularization, as proposed in [7], but the regulariza-

tion parameter needed to be ‘carefully chosen’ and no guidance was

provided as to how this should be set. An analysis of the effect of SH

order and number of sample points on the reconstruction error was

presented and a theoretical law for selecting the SH order proposed.

In [11] this law, which is based on the wavenumber and the radius of

the array, which in the case of HRTFs is the radius of the head, was

shown to provide a lower bound on the required SH order. As such

the authors are not aware of a systematic approach to selecting the

truncation order of spherically sampled data.

The novel contributions of this paper are: an analysis of the

aliasing structure of sampling on the sphere in the presence of mea-

surement noise (Sec. 3); a systematic approach to estimating the SH

coefficients of the array manifold (Sec. 4); and an evaluation of the

proposed approach using measured data (Sec. 5).

2. SPHERICAL FOURIER TRANSFORM

The Spherical Fourier Transform (SFT) and its inverse are well de-

scribed in, for example, [14–16]. Here we introduce the key equa-

tions using our notation which makes a clear distinction between the

truncation orders used for the forward and reverse transforms, which

are generally assumed to be the same, but need not be.

Let A(θ, φ) be a square-integrable function defined on the sur-

face of a sphere, where θ and φ denote the inclination and azimuth

angles, respectively. We can express A(θ, φ) as a series expansion

A(θ, φ) =

1
X

l=0

l
X

m=−l
¯
Al,mY m

l (θ, φ) (1)

where

Y m
l (θ, φ) =

s

2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ) eimφ

(2)

are the SH basis functions of order l 2 N and degree m 2 {−l . . . l}
and Pm

l (·) is the associated Legendre function. The SH coefficients

are obtained from the forward SFT of A(θ, φ) as

¯
Al,m =

Z ⇡

✓=0

Z 2⇡

φ=0

A(θ, φ) [Y m
l (θ, φ)]⇤ sin θdθdφ. (3)
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If the spatial bandwidth of A(θ, φ) is limited such that
¯
Al,m =

0 8 l > LA then the infinite summation in (1) can be truncated with-

out error

A(θ, φ) =

Lrev
X

l=0

l
X

m=−l
¯
Al,mY m

l (θ, φ) (4)

where Lrev ≥ LA. Note that given the set of SH coefficients up to

order Lrev, A(θ, φ) can be evaluated for any direction. Interpola-

tion is therefore possible if these coefficients can be obtained from

discrete samples of A(θ, φ).
Provided that A(θ, φ) is order-limited, (3) can be discretized

¯
Al,m =

X

p

wpA(θp, φp) [Y
m
l (θp, φp)]

⇤ , l  Lfwd (5)

where {wp}p=1...P are the quadrature weights of the sampling

scheme. The number of sample points required depends on their

spatial distribution with a lower bound of P ≥ (Lfwd + 1)2, where

Lfwd is the maximum order of the SH coefficients to be estimated

and Lfwd ≥ LA. Rewriting (5) in matrix form gives

¯
a = Y

H
fwdWa (6)

where W = diag{wp}p=1...P and

a =
⇥

A(θ1, φ1) A(θ2, φ2) · · · A(θP , φP )
⇤T

yl,m =
⇥

Y m
l (θ1, φ1) Y m

l (θ2, φ2) · · · Y m
l (θP , φP )

⇤T

Yfwd =
⇥

y0,0 y1,−1 y1,0 y1,1 · · · yLfwd,Lfwd

⇤

¯
a =

⇥

¯
A0,0

¯
A1,−1

¯
A1,0

¯
A1,1 · · ·

¯
ALfwd,Lfwd

⇤T
.

The quadrature weights are selected such that the orthonormality

properties of the SFT are ensured, i.e. YH
fwdWYfwd = I(Lfwd+1)2 .

In general the sampling schemes used for array manifold mea-

surements do not have a closed-form solution for the quadrature

weights. In this case, the forward discrete SFT is approximated as

¯
a = Y

†
fwda, Lfwd ≥ LA (7)

where Y
†
fwd =

(

YH
fwdYfwd

)−1
YH

fwd is the Moore-Penrose pseudo-

inverse.

In summary, using (7), (Lfwd +1)2 SH coefficients are obtained

from P spatial samples of A(θ, φ) and interpolation to (θq, φq) is

achieved using (4) with LA  Lrev  Lfwd  Lmax, where

Lmax 
p
P -1 is the highest SH order coefficient which can be

obtained without spatial aliasing for the chosen sampling scheme.

3. ALIASING AND THE EFFECT OF MEASUREMENT

NOISE

In the case where LA exceeds Lfwd the forward SFT is

¯
â = Y

†
fwda, LA > Lfwd (8)

where
¯
✏ =

¯
â −

¯
a is the error introduced by spatial aliasing. The

aliasing projection matrix [17,18] provides a means of analyzing the

extent to which spatial frequency components which exceed Lfwd

will be aliased into the estimated SH coefficients. It is defined as

D = Y
†
fwdYΥ (9)

where YΥ =
⇥

y0,0 y1,−1 y1,0 y1,1 · · · yLΥ,LΥ

⇤

and

LΥ is arbitrarily large. For each row of D, indexed as l2 + l +

m + 1, the entry in the column indexed by (l0)
2
+ l0 + m0 + 1

contains the projection operator from
¯
Al0,m0 onto ˆ

¯
Al,m. Provided

the distribution of spatial samples is adequate for the Lfwd-th order

forward SFT, the aliasing projection matrix is structured as D =
⇥

I(Lfwd+1)2 ∆✏

⇤

where ∆✏ denotes the extent of the aliasing

for SH coefficients with Lfwd < l0  LΥ.

In practical measurements the measured impulse response from

a source on a sphere of radius r from the p-th direction, (θp, φp), to

the ν-th microphone is given by

h̃⌫(θp, φp, t) = h⌫(θp, φp, t) + n⌫,p(t) (10)

where h⌫ is true impulse response, n⌫,p is the measurement noise

and t is the time sample index. In the frequency domain (10) be-

comes

H̃⌫(θp, φp, ω) = H⌫(θp, φp, ω) +N⌫,p(ω).

By working in the frequency domain we assume that the noise

is sampled from a zero-mean, Gaussian distribution with frequency-

dependent variance σ2
⌫(ω). Since N⌫,p(ω) for each p is an indepen-

dent realization, the noise in each H̃⌫(θp, φp, ω) is uncorrelated. In

other words each N⌫,p(ω) can be seen as a spatial sample of an un-

derlying function N⌫(θ, φ, ω) which is spatially white and therefore

has infinite spatial bandwidth. The SFT of H̃⌫(θp, φp, ω) is therefore

¯
h̃(ω) = Y

†
fwdh̃(ω) (11)

= Y
†
fwdh(ω) +Y

†
fwdn(ω) (12)

=
¯
h(ω) +

¯
n̂(ω), LH(ω) < Lfwd (13)

where LH(ω) is defined similarly to LA and the remaining terms

are defined according to the corresponding term in (6). Since

N⌫(θ, φ, ω) is not bandlimited, it is inevitable that, regardless of

how high Lfwd is chosen, the noise will be aliased. Consider

as an example the aliasing projection matrices for Lfwd 2 [4, 6]
shown in Fig. 1 for a sampling scheme with Lmax = 5. With

Lrev = Lfwd = 3, all SH coefficients with l > 3 will be aliased

and so lead to inaccuracies in the interpolation. On the other hand,

selecting a higher value of Lfwd one can prevent some of the alias-

ing, since the higher order SHs are explicitly estimated. By selecting

Lrev < Lfwd, the SHs with Lrev < l  Lfwd, which we assume

contain only noise, do not contribute to the interpolated response.

However, for a given sampling scheme, increasing Lfwd also in-

creases the condition number of Yfwd [3], making the pseudo-

inverse more sensitive to noise. There is, therefore, a compromise

required between avoiding spatial aliasing of noise and making the

SFT more sensitive to noise in the SHs with l < Lrev. For compar-

ison, Fig. 1(d) shows the effect of under-sampling, i.e. attempting

to perform the forward SFT with truncation order higher than the

sampling scheme is capable of; aliasing occurs to some extent for

all l < Lfwd.

4. PROPOSED METHOD

We have so far assumed that LH(ω)  Lrev. In practice, whilst

we might expect the array manifold to be band-limited, we do not

know the value of LH(ω). For a microphone mounted on a rigid

sphere, H⌫(θ, φ, ω) depends on the radius of the sphere, ra, and

¯
Hl,m ! 0 for l > ωra/c where c is the speed of sound [19]. A

rigid sphere has often been used as a simple approximation of the
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Fig. 1. Aliasing projection matrix for (a) Lfwd = 3, (b) Lfwd = 4, (c) Lfwd = 5 and (d) Lfwd = 6 for sampling scheme with Lmax = 5.

Only SH coefficients below the dashed horizontal line are included in the reverse SFT when Lrev = 3. Off-diagonal elements indicate aliasing.

human head to describe the directional properties of HRTFs and in-

deed at low frequencies accounts for the main wave phenomena [20].

However, at higher frequencies, resonances within the pinna lead to

a much higher spatial bandwidth. For an arbitrary geometry, though

the dimensions of the baffle may give some indication, the correct

choice of Lrev is ultimately unknown. We therefore now propose a

systematic method to select both Lfwd and Lrev.

Let the continuous function we wish to estimate be H⌫(θ, φ, ω)

and the available data be noisy samples, H̃⌫(θγ , φγ , ω), where

(θγ , φγ), γ 2 1 . . .Γ are the sample directions. These directions

are first partitioned into a training set, P , of size P , a develop-

ment set, Q, of size Q, and a test set, R, or size R. The Lfwd-

order forward SFT (11) is applied to the training set measurements

H̃⌫(θγ , φγ , ω)8γ 2 P to obtain
¯
H̃⌫,l,m(ω,Lfwd)8l  Lfwd. Ap-

plying (4) and dropping the dependence on ω for brevity gives

H̃⌫(θ, φ, Lfwd, Lrev) =

Lrev
X

l=0

l
X

m=−l
¯
H̃⌫,l,m(Lfwd)Y

m
l (θ, φ)

such that the relative absolute error between the noisy measurements

and their reconstructed approximations is [13]

E⌫(θγ , φγ , Lfwd, Lrev) =

∥

∥

∥
H̃⌫(θγ , φγ)− H̃⌫(θ, φ, Lfwd, Lrev)

∥

∥

∥

∥

∥

∥
H̃⌫(θγ , φγ)

∥

∥

∥

where k·k denotes the Euclidean norm. Note that, since the argu-

ments are complex-valued, this measure inherently takes account of

the phase accuracy.

It has been previously observed that overfitting can make the er-

ror for the training set arbitrarily low, but this increases the error for

interpolation points. We therefore consider only the average interpo-

lation error, which for the development set is defined as

E⌫,Q(Lfwd, Lrev) =
1

Q

X

(✓γ ,φγ)2Q

E⌫(θγ , φγ , Lfwd, Lrev) (14)

and for the test set is E⌫,R(Lfwd, Lrev), which is obtained as in (14)

but over the test set, R.

Since the conditioning of Yfwd depends on the directions in the

training set, cross-validation is used to avoid any dependence on

a particular allocation of directions to the training set. Averaging

E⌫,Q(Lfwd, Lrev) and E⌫,R(Lfwd, Lrev) over all folds of the cross-

validation gives, Ē⌫,Q(Lfwd, Lrev) and Ē⌫,R(Lfwd, Lrev), respec-

tively. The proposed method is then to solve the optimization prob-

lem

argmin
Lfwd,Lrev

Ē⌫,Q(Lfwd, Lrev), Lrev  Lfwd  Lmax. (15)

Since the solution space is discrete and bounded it is quite practical

to perform an exhaustive search. Finally, the effectiveness of the

optimization is assessed using Ē⌫,R(Lfwd, Lrev).
As discussed, the value of Lmax depends on the sampling

scheme. The directions for which HRTF or array manifold mea-

surements are made are generally chosen to obtain a reasonably

uniformly distribution or to satisfy particular sampling criteria [11].

In our method, by assigning a random subset of measurement direc-

tions to the development and test partitions, the remaining directions

are unlikely to be optimally distributed and so Lmax will be some-

what lower than the upper bound suggested by Lmax 
p
P -1.

Noting the structure of the aliasing projection matrix in (9), the

aliasing of SH coefficients with l  Lfwd can be quantified as

ε(Lfwd) = tr
⇣

(

Dfwd − I(Lfwd+1)2
)H (

Dfwd − I(Lfwd+1)2
)

⌘
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Algorithm 1 Proposed algorithm to select Lfwd and Lrev

Partition measurements into G folds containing training, develop-

ment and test sets

for each fold do

Determine Lmax for training set

for Lfwd = 1 . . . Lmax do

Calculate
¯
H̃⌫,l,m(ω,Lfwd)8l  Lfwd using (11)

for Lrev = 1 . . . Lfwd do

Calculate E⌫,Q(Lfwd, Lrev) using (14)

Calculate average interpolation error Ē⌫,Q(Lfwd, Lrev)
Select optimum Lfwd and Lrev using (15)

(b)

10 20 30
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10 20 30
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L
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(c)
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Lfwd

-42 -41.5 -41 -40.5 -40 -39.5 -39 -38.5 -38

Fig. 2. Mean error in dB for (a) training, (b) development and (c) test

points averaged over 100 trials at 685 Hz. Optimum combination of

Lfwd and Lrev determined from development points shown as circle.

where Dfwd = Y
†
fwdYfwd. Defining δ as a small positive constant,

Lmax is the largest value of Lfwd which satisfies ε(Lfwd) < δ.

The complete method is summarized in Algorithm 1.

5. EVALUATION

The proposed method was evaluated on the left HRTF data from [21]

which includes measurements for 1784 directions. These directions

lie on contours of equal inclination, spaced 5◦ apart, with the az-

imuth spacing also 5◦ at the equator and increasing towards the

poles to maintain an approximately uniform coverage. In each of

100 folds, the directions were randomly assigned to P , Q or R,

with P = 1521, Q = 132 and R = 131. With this partitioning

the theoretical maximum value of Lmax is 38, but due to the random

allocations one would not expect this best-case condition to be met.

Algorithm 1 was used to determine Lmax and the optimal

values of Lfwd and Lrev. Figure 2 shows the interpolation error,

Ē⌫,Q(Lfwd, Lrev) and Ē⌫,R(Lfwd, Lrev), at a representative fre-

quency. Also shown is the reconstruction error which is defined as

in (14) but for the training points, P . It can be seen that, for all

Lfwd the reconstruction error reduces with increasing Lrev. On the

other hand, the interpolation error is not monotonically decreasing,

indicating the overfitting to noise. It can be seen that for all values

of Lfwd at least a marginal reduction in the interpolation error can

be achieved by setting Lrev < Lfwd. The optimum combination of

Lfwd and Lrev determined from the development set is shown as a

circle in Fig. 2(b) and also in Fig. 2(c).

Figure 3(a) shows the selected values of Lfwd and Lrev over all

frequencies tested using the proposed method. As a baseline, it also

shows the selected truncation order when the optimization was con-

strained such that Lfwd = Lrev. In general, the proposed method

selects a higher value of Lfwd and lower value of Lrev than the base-
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Fig. 3. (a) Optimum SH truncation order for baseline (Lfwd = Lrev)

and for proposed method. (b) Average interpolation error for test

points using optimum values determined using development points.

(c) Benefit of using the proposed method over the baseline.

line, which is consistent with the analysis in Sec. 3 that it is prefer-

able to use a higher truncation order for the forward transform to

avoid aliasing of noise, but to select a lower truncation order for the

reverse transform to exclude this noise from the interpolated esti-

mates. The error obtained for the test set with both the proposed and

the baseline method is shown in Fig. 3(b). Looking at just the dif-

ference between the two, shown in Fig. 3(c), the proposed method

always increases the interpolation accuracy with the improvement

varying between 0.2 and 1.7 dB. Since the most computationally ex-

pensive operation in the proposed method is the calculation of Y
†
fwd

which is required for both the baseline and the proposed method, the

proposed method has minimal additional cost and so is preferred.

6. CONCLUSIONS

A new approach to spherical harmonic interpolation of array man-

ifolds has been proposed based on an analysis of the impact of

measurement noise on spatial aliasing. The proposed method con-

sistently outperformed the baseline approach by between 0.2 and

1.7 dB allowing for more accurate interpolation of array manifolds.
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