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ABSTRACT

The extraction of multiple Direction-of-Arrival (DoA) in-

formation from estimated spatial spectra can be challenging

when such spectra are noisy or the sources are adjacent.

Smoothing or clustering techniques are typically used to

remove the effect of noise or irregular peaks in the spatial

spectra. As we will explain and show in this paper, the

smoothing-based techniques require prior knowledge of min-

imum angular separation of the sources and the clustering-

based techniques fail on noisy spatial spectrum. A broad

class of localization techniques give direction estimates in

each Time Frequency (TF) bin. Using this information as

input, a novel technique for obtaining robust localization of

multiple simultaneous sources is proposed using Estimation

Consistency (EC) in the TF domain. The method is evaluated

in the context of spherical microphone arrays. This technique

does not require prior knowledge of the sources and by re-

moving the noise in the estimated spatial spectrum makes

clustering a reliable and robust technique for multiple DoA

extraction from estimated spatial spectra. The results indicate

that the proposed technique has the strongest robustness to

separation with up to 10◦ median error for 5◦ to 180◦ sepa-

ration for 2 and 3 sources, compared to the baseline and the

state-of-the-art techniques.

Index Terms— localization, direction-of-arrival estima-

tion, intensity vector, estimation consistency, direct-path-

dominance

1. INTRODUCTION

DoA estimation for multiple sources has been a challenging

field in acoustic signal processing and has been widely used

in source tracking, source separation, dereverberation, robot

audition, and speech enhancement. In addition to noise and

reverberation, some factors such as simultaneous activity of

multiple sources, low angular separation between the sources

or high number of sources can degrade the performance of

DoA estimation in multiple source scenarios.

The research leading to these results has received funding from the Euro-

pean Union’s Seventh Framework Programme (FP7/2007-2013) under grant

agreement no. 609465

There are DoA estimators that perform accurately for sin-

gle source scenarios as they are based on single source as-

sumption such as Steered Response Power (SRP)[1, 2, 3],

Maximum Likelihood (ML)[4, 5], or Intensity Vectors (IV)[6,

7, 8, 9]. These methods are often used for multiple source lo-

calization since they are mostly narrow band estimators and

can be easily extended to wideband by applying them on each

narrow frequency band. The resulting DoAs (one for each TF

bin) are used to construct a 2D histogram of DoAs represent-

ing the spatial spectrum (azimuth × elevation).

There are different strategies to extract multiple DoAs

from the spatial spectrum: (1) Peak-detection based: In reg-

ular peak detection [7, 8] or iterative peak detection [10, 11]

the top N peaks from the spatial spectrum are directly or

iteratively (by removing the contribution of the previously

detected peak) selected as extracted DoAs, where N is the

(assumed known) number of sources. These techniques are

usually followed by spatial smoothing if the spatial spectrum

is noisy and contains high spatial frequencies and irregular

peaks, see for example Fig. 3 (a). With strong or moderate

smoothing, two close peaks could be erroneously merged in

the case of adjacent sources whereas with weak smoothing we

fail in detection of widely separated sources due to presence

of close irregular peaks. Because of this, the peak-detection-

based techniques are considered to be semi-autonomous as

they suffer from dependency on critical choice of smoothness

degree and are not suitable for the cases where the separation

of the sources is not known approximately. (2) Classification

techniques such as K-means clustering [12] classify the spa-

tial spectrum into N clusters where their centroids represent

the extracted DoAs. As shown in [12] and also in Fig. 3

(a), this method can fail in the case of a noisy spatial spec-

trum with two relatively close sources since the two adjacent

sources are classified as one cluster and the rest of the noise in

the spatial spectrum is classified as the second cluster, which

results often in high estimation error.

The noise characteristics in the spatial spectrum are asso-

ciated with DoA estimation error. Due to the single source

assumption of such DoA estimators, the accurate DoA esti-

mations belong to the TF bins that are significantly dominated

by a single source. In case of multiple speech sources, there

are often TF regions where the single source domination oc-
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Fig. 1. Normalized accuracy (a) and Temporal weights (b) for

2 sources with 15◦ separation. T60 = 0.4 s and SNR=25 dB.

curs since each speech source includes pauses with different

timing. Additionally, each speech signal has a different time-

frequency characteristic due to the different voice, words or

speed of talking. If we know the TF regions with a dominant

single source, we can use the only accurate DoAs associated

with those bins. This leads to less noisy spatial spectrum esti-

mates and eases the process of DoA extraction. Therefore in-

vestigation for TF regions with single source domination has

been a popular technique for improving the DoA estimation

for multiple sources. Direct-Path-Dominance (DPD) test [13]

and Single Source Zone (SSZ) detection [10, 11] are two ex-

amples of such techniques that are both based on the covari-

ance of the observed signals. The covariance operation can

be computationally expensive and therefore such techniques

may be not suitable for real-time or power-constrained appli-

cations.

In this paper we use Pseudo-intensity Vectors (PIV) as

our DoA estimator for Spherical Microphone Arrays (SMA)

[14], which is computationally fast and estimates a DoA per

TF bin. Further information regarding PIV can be found in

[6]. Our presented technique can be applied to any DoA esti-

mator, which estimates a DoA per TF bin. This paper is struc-

tured as follow: Section 2 briefly reviews the state-of-the-art

DPD test technique. Section 3 presents our novel technique

for removing the noise in the spatial spectrum by estimation

of TF bins associated with accurate estimated DoAs and fi-

nally in Section 4 we compare our proposed technique with

the state-of-the-art and the baseline techniques.

2. REVIEW OF DIRECT PATH DOMINANCE TEST

The DPD test [13] identifies the TF regions with significant

contribution from the direct-path of a single source. The TF

bins are selected using

ΥDPDtest = {(τ, k) : erank (Ra(τ, k)) = 1} , (1)

and

erank (Ra(τ, k)) = 1 if
σ1 (τ, k)

σ2 (τ, k)
> η, (2)

where erank(.) is the effective rank, η is a threshold, σ1 (τ, k)
and σ2 (τ, k) are respectively the largest and the second

largest singular values of spatial covariance matrix Ra(τ, k)
of the observed signals at time frame τ and frequency k.

Since the covariance matrix Ra(τ, k) is calculated using a

window in the TF domain for each (τ, k), the sum of DoA

unit vectors within the window in the TF domain is selected

as the DoA at (τ, k). Further information regarding DPD-PIV

can be found in [15].

3. PROPOSED METHOD

Consider two example sources in a plane with 15
◦

azimuth

separation. Figure 1 (a) presents the normalized accuracy of

PIV estimates for each TF bin where 1 and 0 respectively rep-

resent 0
◦

and 180◦ DoA estimation error to the closest source.

For time frames with significant contribution from a sin-

gle source, DoA estimates are expected to have low estima-

tion error and correspondingly high concentration of DoA es-

timates around the true DoA, while in silence time frames

filled with noise or time frames with multiple active sources

or reverberation we expect random and widely spread DoA

estimates. We propose to exploit the estimation consistency

within time frame and use the consistency to weight frames

accordingly. The temporal frame weights are calculated using

the coefficient of variation [16, 17] of estimates over frequen-

cies within the time frame

ψ(τ) = 1−
√

1− ‖ū(τ)‖, (3)

where ū(τ) = 1

K

∑

∀k

u(τ, k) is the average DoA vector over

allK frequencies and u(τ, k) denotes the estimated DoA unit

column vector at time frame τ and frequency k. As seen in

Fig. 1 (b), the temporal weight ψ(τ) and within-frame aver-

age normalized accuracy show correlated behaviour.

Within a time frame, the dominant source might be ac-

tive at some frequencies and therefore result in having accu-

rate estimates on active frequency regions while having low

accuracy estimates on frequency regions with noise, multi-

ple active sources or reverberation. Therefore we consider

within-frame weighting on frequencies to highlight the more

accurate estimates within the frame. The frequency weight

for a TF bin is calculated using the angular distance between

the estimate and the average estimate within the time frame

λ(τ, k) = 1−
1

π
cos−1

u(τ, k)T ū(τ)

‖u(τ, k)‖‖ū(τ)}‖
. (4)

The Estimation Consistency (EC) weight in the time fre-

quency domain is

w(τ, k) = ψ(τ)λ(τ, k). (5)

517



Fig. 2. EC (a) and DPD (b) weights in TF domain for 2

sources with 15◦ separation. T60 = 0.4 s and SNR=25 dB.

To remove the DoA estimates with low accuracy we select the

TF bins associated with the top M% strongest weights. Fig-

ure 2 illustrates the truncated EC weights (a) and DPD binary

weight (b) in TF domain. Comparing Fig. 2 (a) and Fig. 1 (a),

the TF bins with high accuracy are clearly indicated. Figure

3 illustrates the constructed histogram using (a) No Weight

(NW), (b) EC weight and (c) DPD binary weight with True

DoAs marked as red crosses and estimated DoA using K-

means clustering marked with black ’+’. We see that EC (b)

removes the inaccurate DoA estimates and improves the clus-

tering compared to NW (a) in which the noise is classified as

one very far cluster. Although DPD (b) significantly removes

the inaccurate DoAs in the histogram, it leaves a few inaccu-

rate DoAs which may cause errors in clustering. Comparing

Fig. 2 (b) and Fig. 1 (a), we see that TF regions detected by

DPD may contain TF bins with inaccurate DoA that is equally

weighted as other accurate DoAs within the detected region

although the region is a single source dominant.

Figure 4 shows the distribution of weights versus the ac-

curacy for all TF bins. As we see in Fig. 4 (a), λ(τ, k) may

give high weights to estimates with low accuracy that come

from time frames with noise in which the inaccurate random

estimates are close to the average DoA within the frame. This

problem is corrected in Fig. 4 (b) by considering the tem-

poral weight ψ(τ) which removes those strong weights with

low accuracy. Since our model is based on the assumption of

a dominant single source, we see low weights with high ac-

curacy that come from time frames in which multiple direct

paths or reverberations are dominant and we have multiple

clusters of DoA concentrations. In the case of multiple clus-

ters of DoAs widely spread in angle, λ(τ, k) is low even for a

high concentration of DoAs within the cluster since the aver-

age DoA lies between and far from all clusters.

4. EVALUATION

The Acoustic Impulse Responses (AIRs) of a 32-element

rigid spherical microphone array were simulated using Spher-

Fig. 3. No weight (a), EC (b) and DPD (c) histograms for 2

sources with 15◦ separation. T60 = 0.4 s and SNR=25 dB.

DoAs estimated using K-means clustering.

ical Microphone arrays Impulse Response Generator (SMIR-

gen) [18] based on Allen & Berkley’s image method [19]. The

array with radius 4.2 cm is placed at (2.54, 4.48, 1.45)m in

a 5× 6× 4m shoebox room with T60 = 0.4 s. Ns sources are

placed on the same horizontal plane as SMA with azimuth

separation △φ with 1m distance to the centre of SMA. 100
Monte Carlo trials with randomized DoAs were used for each

case. We employed anechoic speech sources randomly se-

lected for each trial from the APLAWD database [20]. The

active level of each speech source according to ITU-T P.56

[21] is set to be equal across all trials. Spatio-temporally

white Gaussian noise is added to the microphone signals to

produce a signal to incoherent noise ratio (iSNR) of 25 dB.

A sampling frequency of 8 kHz was used with frame length

of 4ms and 50% overlapping of time frames. The method of

PIV [6] was used as our DoA estimator.

In order to avoid any ambiguity due to data association

uncertainty in our results, best case data association was used

Fig. 4. Normalized frequency (a) and EC (b) weights versus

accuracy. Top 5% strongest weights are marked in red.
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to obtain the mean estimation error where the error (in de-

grees) between a true DOA unit vector uo and an estimated

DOA unit vector us is

εuo,us
= cos−1

(

u
T
o us

)

. (6)

K-means clustering with Ns clusters, 100 maximum iter-

ations and random initial centroids is used for EC and DPD

techniques where the final estimated centroids represent the

estimated DoAs. For EC, we empirically chose M = 5%.

The regular peak detection followed by spatial smoothing

with a Gaussian kernel is used for DoA extraction for NW.

4.1. Evaluation of Spatial Spectrum Smoothness and

DPD threshold

In this section we evaluate the effect of smoothness for NW

as well as the effect of threshold in DPD for two sources as a

function of sources angular separation. Figure 5 shows the

distribution of DoA estimation error. The boxes show the

mean as a black dot, median, upper and lower quartiles, and

the whiskers extend to 1.5 times the interquartile range for

the Monte Carlo simulations. The smoothness value in de-

grees denotes the standard deviation of the Gaussian kernel in

the smoothing process. We can see that NW, which requires

smoothing, shows poor robustness to angular separation as it

fails for △φ ≤ 15◦ with smoothness of ≥ 3◦ and fails for

△φ ≥ 30◦ with smoothness of 2◦. Also DPD with varying

η from 2 to 10 fails for △φ ≤ 15◦ while EC, which does

not require smoothing, shows the strongest robustness to an-

gular separation with the mean error of up to 10◦ among all

separations investigated.

4.2. Evaluation of Weighting Strategy

In this section we evaluate the effect Ns and △φ on NW, EC

and DPD techniques. As shown in Fig. 5, NW with smooth-

Fig. 5. DoA estimation error for 2 sources as a function of

sources angular separation for NW, EC, and DPD
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Fig. 6. Median error of techniques for varying Ns and △φ.

ness of 5◦ and DPD with η = 6 (which is also the recom-

mended value in [13]) were selected as the parameters with

the best overall performance for △φ ≤ 15◦. Figure 6 shows

the median DoA estimation error among all trials for NW, EC

and DPD as a function of △φ for 2 to 5 sources. The re-

sults are illustrated separately for the purpose of clarity. As

we can see in both (a) and (b) of Fig. 6, NW and DPD show

poor robustness to angular separation as they starts to fail for

△φ ≤ 15◦ while EC shows the strongest robustness to sep-

aration as the median error variation is less than 11◦ in each

case of Ns.

EC, compared to NW, also shows significantly more ro-

bustness to number of sources as it varies on average by 9◦

from 2 to 5 sources while NW varies on an average by more

than 30◦. For 4 or more sources with △φ ≥ 45◦, EC shows

less accuracy than DPD and NW. This happens because as

the number of sources increases, fewer time frames with a sin-

gle source dominant are present, and therefore the assumption

of concentration around a single average DoA is less often a

good model for DoA distribution.

5. CONCLUSIONS

We proposed a technique for the improvement of multiple

source localization using estimation consistency in TF do-

main. Temporal and frequency weights are used to detect

the TF bins with high accuracy of DoA estimation in order

to remove the estimates with low accuracy from the spa-

tial spectrum which leads to improvement in the process of

DoA extraction using K-means clustering. We compared our

technique with the basic histogram (NW), as a baseline, and

the DPD histogram, as a state-of-the-art technique. The re-

sults show that our technique has the strongest robustness to

sources angular separation with up to 10◦ median error for

5◦ to 180◦ separation for 2 and 3 sources while DPD and

NW fail for 15◦ or less separation. Due to the assumption of

single source dominant in the time frame, as the number of

sources increases to 4 or more with 45◦ or more separation,

the accuracy of our technique drops with > 10◦ median error.
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