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ABSTRACT

Signal processing in spherical harmonic domain has the ability to

decouple frequency dependent and location dependent components

of the signal received. A method for low dimensional spherical

harmonic feature extraction is proposed in this work for DOA es-

timation in noisy and reverberant environments. The features are

extracted using frequency smoothing and a transformation which

makes them frequency and signal invariant. Additionally an on-

line manifold regularization framework is explored which utilizes

the proposed spherical harmonic features to compute real time DOA

estimates. This framework minimizes an instantaneous risk func-

tion and finds an inverse mapping function that maps spherical har-

monic features to the DOA estimate. Performance of the proposed

DOA estimation method is then compared with DOA estimates ob-

tained from features such as generalized cross correlation and rel-

ative transfer function in a semi-supervised manifold regularization

framework. Experimental results on DOA estimation in terms of root

mean square error and probability of resolution indicate a reasonable

improvement in the localization performance along with significant

reduction in feature dimension.

Index Terms— Online Learning, Spherical Microphone Array,

Acoustic Source Localization, Spherical Harmonics

1. INTRODUCTION

DOA Estimation is a challenging task especially in presence of noise

and reverberation. Various applications of acoustic source local-

ization include Distant Automatic Speech Recognition [1] , Music

Information Retreival [2] , Automatic Camera Steering [3, 4] and

hence it has been an active area of research. Also, Spherical Mi-

crophone Array (SMA) [5] has received significant attention of re-

searchers in the recent days. SMA captures spherical variation of

acoustic field [6] with spherical harmonics. In this work, we ad-

dress the problem of DOA estimation using spherical harmonic fea-

tures. A wide range of DOA estimation algorithms are developed in

the past few decades. Most of them can be broadly categorized as

follows. Subspace based methods such as MUltiple SIgnal Classi-

fication(MUSIC), Spherical Harmonic MUSIC (SH-MUSIC) [7, 8],

Steered beamforming methods such as Steered Response Power with

Phase Tranform (SRP-PHAT) [9], Time Delay of Arrival (TDOA)

based approaches [10], Learning based approaches with features

such as Generalized Cross Correlation (GCC) [11], Relative Transfer

Function (RTF) [12] and Sparsity based methods [13].

In adverse environments, above mentioned methods suffer from

inaccurate DOA estimates or high computational complexity. Learn-

ing based approaches provide better performance in adverse environ-

ments. However, features based on GCC and RTF are high dimen-

sional and hence learning becomes computationally complex. The

contributions of this work are two fold. First, it proposes novel

low dimensional spherical harmonic features which are robust to

noise and reverberation. Secondly, an online manifold regulariza-

tion framework that can utilize the low dimensional nature of these

features to compute real time DOA estimates is developed.

The rest of the paper is organized as follows. Section 2 in-

troduces data model in spherical harmonic domain and extraction

of low dimensional and signal invariant spherical harmonic fea-

tures. Section 4 evaluates performance of different features with the

proposed spherical harmonic features(SHF) using Online Manifold

Regularization(OMR). Section 5 concludes the paper.

2. LOW DIMENSIONAL SPHERICAL HARMONIC

FEATURES FOR DOA ESTIMATION

In this section, computation of low dimensional spherical harmonic

features for DOA estimation is described. The data model in spher-

ical harmonics domain is subject to frequency smoothing and then

transformed to obtain signal invariant spherical harmonic features.

The low dimensionality and robustness of these features is also de-

scribed herein.

2.1. Data Model in Spherical Harmonic Domain

Consider an acoustic scene where L point sources are located along

with a spherical microphone array. The location of sources is indi-

cated by Ψi = (θi, φi) i = 1, 2, ...L where θ and φ are the ele-

vation and azimuth angles respectively. Location of microphones is

given by Ωi = (θi, φi) i = 1, 2, ....I . The following data model

gives the sound pressure observed in frequency domain with I mi-

crophones and L sources.

p(k) = V(k,Ψ)s(k) + n(k) (1)

where k is wave number, s(k) is source strength vector and n(k)
is additive zero mean white gaussian noise and V(k,Ψ) is steering

matrix.

Expanding the steering matrix using spherical harmonics [14,

15], Equation 1 can be rewritten as

p(k) = Y(Ω)B(kr)YH(Ψ)s(k) + n(k) (2)

Y(Ω) ∈ C
(N+1)2×I ,Y(Ψ) ∈ C

(N+1)2×L are the spherical har-

monics matrices with angular positions corresponding to micro-

phones and sources respectively. B(kr) is the mode strength matrix

corresponding to the wave number k and SMA of radius r.

The matrix formulation of orthogonality of spherical harmonics

for uniform sampling or nearly uniform sampling [16] can be stated

as
4π

I
Y

H(Ω)Y(Ω) = I (3)

Consider a reverberant environment with R significant reflec-

tions with ai as the reflection coefficient of the ith reflector. The
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transformation between spatial and spherical harmonics domain can

be done using spherical harmonics matrix as

pnm(k) = Y
H(Ω)p(k) (4)

where pnm(k) is the observation vector in spherical harmonics do-

main. From Equations 2 and 3, data model takes the following form

[17].

pnm(k) =
I

4π
B(kr)YH(Ψ) a s(k) +Y

H(Ω)n(k) (5)

where a = [a1, a2, ......aR]
T . The signal term in Equation 5 be-

comes independent of frequency by left multiplying Equation 5 with

B−1(kr). For notational convenience lets use the following repre-

sentation.

xnm(k) =
4π

I
B

−1(kr)pnm(k) (6)

From Equations 5 and 6, the final data model takes the following

form.

xnm(k) = Y
H(Ψ) a s(k) +

4π

I
B

−1(kr)YH(Ω)n(k) (7)

This data model in spherical harmonics domain is used for extraction

of robust and low dimensional features as explained in the following

section.

2.2. Extraction of Low Dimensional Signal Invariant Spherical

Harmonic Features

In earlier work on extraction of features for learning algorithms, RTF

and GCC are widely used. These features are high in dimension and

this dimensionality increases quadratically with increase in number

of microphones. Their performance reduces in noisy and reverber-

ant environments. So, new features are obtained from the spherical

harmonics data model proposed in this work. These features are low

dimensional and robust. In order to obtain these low dimensional

features that are signal invariant, the data model in Equation 7 is

considered.

Spherical harmonic coefficients of the observations in Equation

7 are a function of direction of arrival of the signal and the source

strength defined as follows.

xnm(k) = f(Ψ, s(k)) (8)

The objective here is to find a transformation T that operates on

xnm(k) to give feature vector ynm such that the feature is a function

of only direction of arrival, thus making it signal invariant.

ynm = T(xnm(k)) subject to ynm = f̃ (Ψ) (9)

This transformation normalizes xnm(k) by the spherical har-

monic coefficient x00(k), since x00(k) is dependent only on the sig-

nal strength s(k) and not on the DOA yielding x̃nm(k) which is

signal invariant. It must be noted that the dependence of x̃nm(k)
on noise can be reduced by taking an Expectation of x̃nm(k). The

methodology for obtaining the transformation T is discussed in the

ensuing sections.

2.2.1. Signal Invariance

Considering x00 in Equation 7, it can be written as

x00(k) =

R
∑

i=1

Y 0
0 (ψi) ai s(k) +

4π

I

I
∑

i=1

Y 0
0 (Ωi) n(k) (10)

The spherical harmonic basis functions of order n and degreem
can be defined as

Y m
n (θ, φ) =

√

2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cos θ) eimφ

(11)
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Fig. 1. Spherical field variation of two signals arriving from same

direction with different signal strengths(left column). Spherical field

variation after feature extraction showing that the features are invari-

ant to the signal strengths(right column).

For the case where m and n are zero,

Y 0
0 (ψ) =

√

1

4π
(12)

From Equations 10 and 12, we have

x00(k) =
1√
4π

[(

R
∑

i=1

ai

)

s(k) +
4π

I

(

I
∑

i=1

ni(k)

)]

(13)

As I increases, the second term tends to zero as fourier transform of

zero mean gaussian noise is also zero mean gaussian. Thus, x00(k)
is just a scalar multiple of the signal strength i.e x00 = α . s(k)
where α is some constant. Hence, x00(k) can be used to remove the

influence of the signal strength on the observations. From Equation

7, we obtain signal invariant features x̃nm(k) as

x̃nm(k) =
xnm(k)

x00(k)
=

1

α
Y

H(ψ) a+
znm(k)

α s(k)
(14)

where znm(k) = 4π
I
B−1(kr)YH(Ω)n(k)

2.2.2. Robustness to noise

It may be noted from Equation 14 that x̃nm(k) contains two terms.

The first has information on the DOA and the second corresponds

to noise. An Expectation operator is now applied on Equation 14 to

obtain ynm. For different wave number k, the first term in Equa-

tion 14 remains the same since it depends only on the DOA. On

the other hand, the second term which is a realization of noise ap-

proaches asymptotically to zero since noise is assumed to be WGN.

The transformation T is now complete and yields ynm as follows.

ynm = Ek(x̃nm(k)) = Ek

[

xnm(k)

x00(k)

]

(15)

The spherical harmonic features ynm are thus obtained using a trans-

formation T as discussed in the aforementioned sections.

2.2.3. Low Dimensionality

Dimensionality of the feature vector plays a major role in determin-

ing computational complexity of any machine learning algorithm.

The lower the feature vector dimension, lower is the complexity of

the algorithm. As RTF and GCC features are defined for a pair of

microphones, their dimensionality represented by D is as follows.

D(RTF/GCC) = (D(RTF/GCC) per pair)× IC2 (16)

512



where
nCk =

n!

k!(n− k)!
(17)

For the proposed spherical harmonic features, the feature dimen-

sionality is governed by I = β(N+1)2 where β > 1 and β depends

on the sampling method[18, 19] and N is the order of the spherical

microphone array. Feature dimensionality for GCC, RTF for a pair

of microphones are as indicated in [11, 12]. Using Equation 16, Ta-

ble 1 illustrates the dimensionality of proposed feature compared to

the existing features. For better accuracy at multiple frequencies,

higher number of microphones is preferred. As can be seen from the

Table 1, with more than ten times the number of microphones, we

are able to get down the dimensionality by ten times.

Feature

Type

Microphones

dependency

Theoretical

Dimensionality

I Feature

Dimen-

sion

RTF Quadratic 300 × IC2 2 300

GCC Quadratic 20 × IC2 8 560

SHF Linear (N + 1)2 ≤ I 50 49

Table 1. Comparison of dimensionality of various features and their

dependence on the number of microphones.

3. ONLINE MANIFOLD REGULARIZATION USING

SPHERICAL HARMONIC FEATURES FOR DOA

ESTIMATION

Online learning has not been investigated for DOA estimation since

high dimensional feature vectors obtained from GCC,RTF makes

online learning computationally complex. Since low dimensional

spherical harmonic features are used in this work, an online learn-

ing framework is developed. Online learning [20] constructs a se-

quence of functions f1, f2......fT . With each incoming feature yt,
algorithm tries to find an estimate of function,ft so that the instan-

taneous risk function is minimized. Existence of the label φt(DOA)

at time instant t is indicated by the binary(0 or 1) function,δ(φt).
We assume that this function lies in a Reproducible Kernel Hilbert

Space (RKHS) which is associated with a unique kernel function that

evaluates each function in the space by an inner product. An essen-

tial requirement of the kernel is the notion of locality which can be

defined as

for ‖yi − yj‖ << ǫk, k(yi, yj) 7→ 1

for ‖yi − yj‖ >> ǫk, k(yi, yj) 7→ 0
(18)

for some value of ǫk. A common choice of kernel function that fol-

lows the notion of locality is a Gaussian kernel with variance ǫ2k
defined as

k(yi, yj) = exp

{

−‖yi − yj‖2
ǫ2k

}

(19)

Therefore the definition of RKHS with gaussian kernel can be

defined as a set of functions as

Hk =

{

f |f(.) =
N
∑

i=1

aikhi
(.); ai ǫ R, hi ǫ M

}

(20)

Before proceeding to online manifold regularization, a batch

semi-supervised regularized risk function can be framed as

J(f) =
1

l

T
∑

t=1

δ(φt)c(f(yt), φt) + γK ‖f‖2
HK

+ γM ‖f‖2
M

(21)

where c is a cost function, γK and γM are regularization parameters,

‖.‖2
Hk

and ‖.‖2
M

are norms defined with respect to RKHS and man-

ifold M respectively. Since online learning algorithm has access to

only a single instance at a time, the batch risk function is replaced

by an instantaneous risk as follows.

Jt(f) =
T

l
δ(φt)c(f(yt), φt) + γK ‖f‖2

Hk
+ γM ‖f‖2

M
(22)

The function ft+1 can now be found by minimizing Jt(f) as

ft+1 = argmin
f

Jt(f) (23)

The online algorithm performs this minimization by using gradient

descent to obtain ft+1 as

ft+1 = ft − ηt
∂Jt(f)

∂f

∣

∣

∣

∣

ft

(24)

Finding ft+1 translates to finding the coefficients a
(t+1)
i where

i = 1, ....t. These coefficients can be computed in two steps using

Equations 22 and 24.

a
(t+1)
i = (1− ηtγK)a

(t)
i − 2ηtγM (ft(yi)− ft(yt))wit

for i = 1, 2, 3...., t− 1
(25)

Further, ai at tth index at time instant t+ 1 can be computed as

a
(t+1)
t = 2ηtγM (ft(yi)− ft(yt))wit − ηt

T

l
δ(yt)c

′(f(yt, φt))

(26)

Once the coefficients are found at time instant t + 1, DOA for

feature vector yt+1 can be found using the definition of function

ft+1 as defined below.

ft+1(yt+1) =

t
∑

i=1

a
(t+1)
i k(yi, yt+1) (27)

Online manifold regularization can be summarized as follows.

At each time instant, a feature vector yt is received. Using Equations

25 and 26, an new estimate of the function, ft+1 is obtained. DOA

at time instant t + 1 can be estimated by using function, ft+1 as

indicated in Equation 27.

4. PERFORMANCE EVALUATION

The performance of the proposed low dimensional spherical har-

monic features in an online manifold regularization framework is

evaluated by conducting experiments on DOA estimation for vary-

ing T60 and noise. A comparative performance analysis is done with

the Semi-Supervised Learning (SSL) approach [12].

4.1. Experiments on DOA Estimation

In this work, we utilize speech data from GRID corpus [21] for ex-

periments. Experimental study is conducted by simulating a room of

dimensions 6 × 6 × 6m with various boundary reflection coeffi-

cients corresponding to different T60. A rigid spherical microphone

array of radius 15 cm is placed at center of the room and the source

is placed at different azimuthal angles and a fixed elevation. Since

SMA is used, DOA estimation can be easily extended to elevation

as well. Impulse responses from source at different azimuthal angles

to microphones on the sphere are computed using SMIR generator

[22]. The objective is to recover the unknown azimuth angle of in-

coming signal using a training set that consists of both labeled and

unlabeled samples. Label ratio i.e ratio of number of labeled samples

to total number of samples in semi-supervised and online algorithm

implementation is 0.4.
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4.2. Experimental Results

Different quality measures such as cumulative Root Mean Square Er-

ror(RMSE) [7] and Probability of Resolution are used to evaluate the

performance of the proposed online manifold regularization method.

Results are also compared to semi-supervised learning methods.

4.2.1. Cumulative RMSE Analysis

The cumulative RMSE is defined as follows.

RMSE =
1

LT

T
∑

tr=1

L
∑

l=1

[

(

φl − φ̂
(tr)
l

)2
]

(28)

where tr is the trial number among T trials and l indicates the source

location among L possible different locations.

4.2.2. Probability of Resolution Analysis

Probability of resolution within a confidence interval gives a good

statistical analysis of DOA estimation. Probability of resolution is

defined as follows.

Pr =
1

LT

T
∑

tr=1

L
∑

l=1

Pr(|φl − φ̂
(tr)
l | ≤ ζ)

=
1

LT

T
∑

tr=1

L
∑

l=1

[

sgn(ζ − |φl − φ̂
(tr)
l |)

]

(29)

where Pr(.) denotes the probability of an event, ζ is the confidence

interval, tr is the trial number among T trials and l indicates the

source location among L possible different locations. sgn(x) is the

signum function defined as

sgn(x) =

{

1 if x ≥ 0
0 if x < 0

(30)

4.2.3. Experimental Results on DOA Estimation

Experiments on DOA estimation are conducted at various SNR. In

Figure 2 and it can be clearly seen that after certain point of time,

the localization accuracy improves and approaches zero irrespective

of SNR. RMSE in degrees for different reverberation times(T60) is

also plotted in Figure 3. It can be noted that performance of online

learning algorithm does not vary much when the reverberation times

are varied. In Table 2, the proposed Online Manifold Regulariza-

tion method using spherical harmonic features is also compared to

a semi-supervised learning framework which has been used earlier

in the context of DOA estimation. In Figure 4, probability of reso-

lution with GCC,RTF, and the proposed spherical harmonic features

in a semi-supervised learning framework [12] are compared.

Methods
SNR = 0 dB SNR = 10 dB SNR = 20 dB

RMSE Pr RMSE Pr RMSE Pr

SSL-GCC 12.03 0.21 11.61 0.22 11.06 0.43

SSL-RTF 12.06 0.16 11.86 0.22 10.33 0.41

SSL-SHF 6.91 0.62 4.23 0.78 3.18 0.85

OMR-SHF 2.70 0.535 2.71 0.731 2.32 0.80

Table 2. RMSE for GCC,RTF and SHF features for various DOA

estimation methods.
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Fig. 2. Variation of RMSE with time at different SNR for Online

Manifold Regularization with low dimensional spherical harmonic

features.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8

10

12

14

Time

R
M

S
E

[0
]

 

 

T
60

 = 1.5S

T
60

 = 2.5S

Fig. 3. Variation of RMSE with time at different reverberation

times(T60) in case of Online Manifold Regularization with low di-

mensional spherical harmonic features.

10 20 30 40
0

0.2

0.4

0.6

0.8

1

SNR in dB

P
ro

b
a
b
ili

ty
 o

f 
R

e
s
o
lu

ti
o
n

 

 

RTF

GCC
SHF

Fig. 4. Illustration of probability of resolution using GCC,RTF and
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ing framework.

5. CONCLUSION

A new method for computing low dimensional spherical harmonic

features that are robust, highly direction dependent, and signal in-

variant is proposed in this work. The lower dimensionality of the

features ensures that they can be used in a online manifold regular-

ization framework for real time DOA estimation. The experimen-

tal results indicate reasonable DOA estimates even in highly noisy

and reverberant environment which is motivating enough to utilize

the method in teleconferencing applications. Existing learning tech-

niques assume that in a reverberative environment, features corre-

spond to a single speaker. In practice however there can be multiple

speakers present at a single time instant. The problem of multiple

speaker separation in such contexts will be investigated using time

frequency analysis in future work.
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