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ABSTRACT

Many state-of-the-art multichannel speech enhancement methods
rely on second-order statistics of the desired speech signal, the noise
signal, or both. Estimation of those are difficult in practice, resulting
in a practical performance that is typically much lower than their
potential theoretical performance. We propose two multichannel
enhancement techniques that instead rely on a model for voiced
speech. That is, the proposed methods are driven by the signals’
fundamental frequencies, which may be accurately estimated even
in noisy scenarios. The first method is designed independently of
the microphone array geometry and source position, whereas these
are utilized in the second approach. Thereby, we can investigate
when to exploit such information in the case of localization errors
and violations of the spatial assumptions. Numerical results show
that the proposed method is able to outperform competing methods
in terms of both output SNRs and PESQ scores.

Index Terms— multichannel speech enhancement, voiced
speech, MMSE filtering, harmonic filters, DOA mismatch.

1. INTRODUCTION

During recent decades, much effort has gone into removing noise
from recordings of speech; this problem is referred to as speech en-
hancement. The problem is of uttermost importance in numerous
applications, such as human-machine interaction, hearing-aids, and
hands-free communication. Recently, solutions to the enhancement
problem have been sought through employment of multiple micro-
phones, adding extra dimensionality to the problem, which in turn
allow for higher degrees of noise reduction. Such hardware setups
are becoming common in modern audio equipment, such as in hear-
ing aids, wireless headsets, and loudspeakers.

Typically, many of the recent proposals for multichannel en-
hancement are driven by knowledge about the noise statistics. Ex-
amples of such are linear filtering, subspace, statistical, and spec-
tral subtractive methods (see, e.g., [1–4]). Some of these methods
have been shown to achieve excellent results in theory, when accu-
rate estimates of the necessary statistics are available [1]. However,
in practice, the statistics are often difficult to estimate, e.g., due to
simultaneous speech and noise presence, having a detrimental im-
pact on the noise reduction performance. This has spurred interest
in parametric model-based speech enhancement, in which estimates
of speech parameters, such as the fundamental frequency, drives the
noise reduction rather than the noise statistics. It has been shown in
earlier work that these parameters can be estimated very accurately
even at low signal-to-noise ratios (SNRs) [5, 6]. The model-based
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approach has mainly been considered for single-channel enhance-
ment; some examples of this development be found in [7–10]. A
purely parametric model-based approach will not suffer from the dif-
ficulties of estimating noise statistics, but it is targeted only towards
some parts of speech signals like voiced speech. In practice, it should
therefore be applied only to these parts of the speech, e.g., by using
voiced-unvoiced speech detection [11–13] or a parallel approach as
in [14, 15].

In this paper, we propose two parametric model-based speech
enhancement methods based on linear filtering. The methods are
based on minimization of the mean square error between the filter
output and the desired speech signal, which herein is assumed to
be periodic voiced speech. This approach has previously been used
for spectral estimation [16], and single-channel speech enhancement
[9]. Compared to the state-of-the art method in [15], the proposed
methods are formulated in the time-domain instead of the frequency
domain. By designing the filters in the time-domain, we can ensure
that the desired signal is undistorted by satisfying only a few lin-
ear constraints. This is much more complicated to achieve in the
frequency domain due to spectral leakage. Moreover, the proposed
approach tackles the multichannel speech enhancement problem as
opposed to the single-channel methods in [7–10, 15]. The first of
the proposed methods is derived independently of the array geome-
try and of the relative positions of the array and the source, whereas
the second method takes these aspects into account. Another contri-
bution of the paper is that this enables us to shed light on which of
these approaches to utilize in case of localization errors and model
violations.

These topics are covered by first introducing the signal model
and problem formulation in Section 2. Then, in Section 3, we present
the proposed filtering methods, followed by experimental results in
Section 4. Finally, a discussion of the obtained results is found in
Section 5.

2. PROBLEM FORMULATION

We consider a scenario whereK microphones are used for recording
a desired speech signal corrupted by additive noise. Mathematically,
the recording by microphone k may be formulated as

yk(n) = xk(n) + vk(n), (1)

for time instances n = 0, . . . , N − 1 and k = 0, . . . ,K − 1, where
xk(n) is the desired speech signal and vk(n) the additive noise,
which could be constituted by, e.g., late reverberation, stationary
background noise, or interfering speech sources or a combination
thereof. The multichannel enhancement problem aims at extracting
x0(n) from the recorded data, with little or no speech distortion, and
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with as much noise reduction as possible. To facilitate this task, we
consider N time-consecutive and time-reversed samples from each
microphone, such that

yk =
[
yk(0) yk(−1) · · · yk(−N + 1)

]T
= xk + vk, (2)

with (·)T denoting the transpose, and where the signal and noise
vectors, xk and vk, are defined similarly to yk. Our aim is thus to
extract x0(0) from the recordings in y0, . . . ,yK−1. The enhance-
ment methods proposed herein are targeted towards voiced parts of
the speech, which typically is the most dominant part of a general
speech recording. For such parts, we can accurately model frames
shorter than 20 ms as [17]

yk(n) =

L∑
l=−L

αl,ke
jlω0n + vk(n), (3)

where ω0 denotes the fundamental frequency, L the number of har-
monic components, and αl,k the complex harmonic amplitudes. It
is assumed that the sought speech signal is zero mean, such that
α0,k = 0. At this point, it should be noted that the model in (3) and
the filters derived in Sec. 3 may easily be extended for non-stationary
speech by allowing the fundamental frequency to vary linearly over
time as shown in [17]. While the model in (3) allows for an accurate
modeling of voiced speech, we envision that the harmonicity-based
filters proposed in the following section also to be used in a hybrid
scheme, like that of [14, 15]. That is, they should only be applied
to the relevant parts of the speech part of the signal, whereas tradi-
tional noise-driven filters should be used for the unvoiced parts of
the speech.

3. HARMONIC MULTICHANNEL ENHANCEMENT

To tackle the speech enhancement problem, we consider two differ-
ent approaches both based on linear filtering of the observed data.
That is, we extract the desired speech signal, x0(n), from the micro-
phone k recordings, yk(n), as

x̂0,k(n) = hTk yk(n), (4)

with

hk =
[
hk(0) · · · h(M − 1)

]T
, (5)

yk(n) =
[
yk(n) · · · yk(n−M + 1)

]T
, (6)

where M denotes the filter length. In the first approach, we design
the filters independently of the array geometry and of the relative
positioning of the array and the source, whereas we take this infor-
mation into account in the second approach. We do this in order to
investigate which approach is better in case of, e.g., localization er-
rors and different degrees of violations to the model assumptions. In
the following subsections, we refer to these filtering approaches as
the geometry-based and geometry independent filters.

3.1. Geometry Independent Filters

When the geometry of the sensor array is not known or utilized, we
may model the M observations in each microphone as

yk(n) = Zαk(n) + vk(n), (7)

with

αk(n) = w∗(n)�αk, (8)

w(n) =
[
e−jLω0n · · · e−jω0n ejω0n · · · ejLω0n

]H
,

αk =
[
α∗
k,L · · · α∗

k,1 αk,1 · · · αk,L
]T
,

where (·)∗ and � denote the elementwise complex conjugate and
product operators, respectively. Furthermore, let

Z = [z−L · · · z−1 z1 · · · zL] , (9)

zl =
[
1 e−jlω0 · · · e−jlω0(M−1)

]T
. (10)

Using this model, one may introduce a multichannel speech en-
hancement filter without information about the array geometry and
source positioning. The proposed method consists of two stages:
first, one extracts the desired speech individually from each channel
and, secondly, one optimally weighs the different speech estimates
to achieve the multichannel enhancement.

The filters are based on minimization of a mean squared error
(MSE), reminiscent of the technique used in the amplitude and phase
estimation (APES) method introduced in [16], and in the filters for
single channel enhancement and separation of periodic signals in-
troduced in [9]. The idea is to formulate a criterion that enables us
to make the output of the filter at microphone k resemble a periodic
signal at microphone 0 as much as possible. This may be achieved
through minimization of the following MSE:

Pk =
1

N −M + 1

N−1∑
n=M−1

∣∣∣hTk yk(n)−αH0 w(n)
∣∣∣2 . (11)

In order to do so, we first solve this problem for microphone 0, not-
ing that the MSE may be expressed as

P0 = hT0 R0h0 −αH0 G0h0 − hT0 G
H
0 α0 +αH0 Wα0 (12)

with

Rk =

N−1∑
n=M−1

yk(n)y
T
k (n)

N −M + 1
, Gk =

N−1∑
n=M−1

w(n)yTk (n)

N −M + 1
,

W =

N−1∑
n=M−1

w(n)wH(n)

N −M + 1
.

Minimizing the MSE with respect to the amplitudes, α0, typically
being unknown in practice, yields

α̂0 = W−1G0h0. (13)

These estimates can be used to rewrite the MSE as

P0 = hT0 Q0h0, (14)

where Qk = R0 − GH
0 W−1G0. We note that Qk might be in-

terpreted as a particular noise covariance matrix estimate for micro-
phone k (see also [18]), i.e., the MSE in (14) can be seen as the
residual noise power after filtering. That is, to design our noise re-
duction filter for microphone 0, we minimize (14) with respect to
the residual noise power, with the constraint that the desired signal
should be undistorted in the process. From the model in (7), we
deduct that this is achieved by solving

min
h0

hT0 Q0h0 s.t. hT0 Z = 1T , (15)
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with 1 being a L × 1 vector of ones. The solution to this quadratic
optimization problem is given in closed-form as

h0 = Q−1
0 Z

(
ZHQ−1

0 Z
)−1

1. (16)

That is, the MSE of the enhancement filter for microphone 0 is

P0 = 1T
(
ZHQ−1

0 Z
)−1

1. (17)

Next is to extract the desired signal from the other microphones.
We achieve this by minimizing Pk with respect to hk, for k =
1, . . . ,K − 1, using the amplitude estimates in (13) for microphone
0 in place of α0 in (11). The resulting filter designs are given by

hk = R−1
k GH

k W−1G0h0. (18)

The MSEs of these filters are found by inserting (18) into (11), yield-
ing

Pk = hT0 G
H
0 W−1

(
W −GkR

−1
k GH

k

)
W−1G0h0. (19)

Since one may easily obtain the MSEs of the different filters, we can
use these to combine the extracted speech from each channel into a
single enhanced speech signal. This is achieved by taking a weighted
mean of the estimates as [19]

x̂0(n) =
1TP−1x̂0(n)

1TP−11
, (20)

where

P = diag
([
P0 · · · PK−1

]T)
, (21)

x̂0(n) =
[
x̂0,0(n) · · · x̂0,K−1(n)

]T
. (22)

In the remainder of the paper, we refer to this method as the harmonic
multichannel MMSE method (M-MMSE).

3.2. Geometry-based Filters

With knowledge of the array geometry and the location of the speech
source, one may beneficially take this information into account in the
filter design. This is here illustrated for the case of a uniform linear
array (ULA) under a far-field assumption. In such scenarios, the
signal model can be further specified as [20]

yk(n) =

L∑
l=−L

αle
jlω0ne−jτklω0fs + vk(n) (23)

with τk = k d sin θ
c

being the time difference of arrival (TDOA) of
the speech source between microphones 0 and k, d the microphone
spacing, θ the source direction of arrival (DOA), c the sound propa-
gation speed, and fs the sampling frequency. Thus, one may model
the M samples recorded by each microphone as

yk(n) = ZDkα0(n) + vk(n), (24)

where

Dk = diag
([
e−jLkηθ · · · e−jkηθ ejkηθ · · · ejLkηθ

])
,

with ηθ = ω0fs
d sin θ
c

. We then design the filters for each micro-
phone by minimizing (11) under the constraint that the desired signal
from the DOA, θ, should be passed undistorted, i.e.,

min
hk

hTkQkhk s.t. hTkZDk = 1T . (25)

Since the assumed DOA is included in the constraints, the outputs
of microphone filters will be time aligned. The solution to the above
optimization problem is given by

hk = Q−1
k Z

(
ZHQ−1

k Z
)−1

Dk1. (26)

Thus, the MSE of filter k is

Pk = 1TDH
k

(
ZHQ−1

k Z
)−1

Dk1. (27)

To obtain the final signal estimate, we combine the signal estimates
from each channel as in (20), with the weights as given by (27).
This method is termed the geometry-based harmonic multichannel
MMSE (GM-MMSE) method.

4. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed methods, we applied
them on different scenarios where speech signals of interest sampled
at 8 kHz are corrupted by reverberation and diffuse babble noise [21]
at an input SNR of 10 dB. Also, we included two comparison meth-
ods in the evaluation: a single-channel harmonic MMSE (S-MMSE)
filter [9] applied on microphone 0, and delay-and-sum beamforming
followed by the S-MMSE filter as a postfilter (DSB+MMSE). The
proposed methods were only compared to competing signal-driven
enhancement methods based on the harmonic model, since in prac-
tice they would have to be used in a hybrid scheme where they are
only applied to the voiced speech signal parts as mentioned in the in-
troduction. This may though be achieved by using a voiced-unvoiced
speech detector [11–13] or a parallel approach as in [14, 15], but
this is out of the scope of this paper. The multichannel microphone
data were generated from single-channel recordings speech record-
ings (three male and one female speech sentence [22]) by convolving
with room impulse responses (RIRs) obtained using an RIR gener-
ator [23], with the following setup: the center of a uniform linear
two-microphone array was placed at [3.5, 1, 1] m in parallel with the
x-axis in a room with dimensions 8 × 6 × 4 m. Moreover, the mi-
crophones were omnidirectional and spaced by 0.2 m. The source
was placed 2 m from the array at an angle of −40◦, emitting sound
with a speed of 343 m/s. Finally, the T60 was 0.2 s and the simulated
RIRs were highpass filtered. Before applying the enhancement, the
fundamental frequency was estimated from microphone 0 for each
time instance using a fast implementation [24] of the nonlinear least
squares estimator in [5, 6] and the model order was obtained using
the method in [25]. Then, the harmonic MMSE filters were all im-
plemented with M = 40, N = 160, and L = 12. We could have
used the model order estimates from the fundamental frequency es-
timation step, but we found these to be perceptually too low. More-
over, a small diagonal loading of ε = 1e−8 was added to the matrix
inverses in the MMSE filters, since the harmonics can be linearly
dependent for low fundamental frequencies. The DSB beamformer
used in one of the comparison methods was applied on 50 % time-
overlapping blocks of 200 samples, using overlap-add with Hanning
windows.

With this setup, we first investigated the enhancement perfor-
mance versus errors in the assumed DOA of the speech source. The
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Fig. 1. Measured output SNRs, signal reduction factors, and PESQ scores for the proposed and comparison methods in speech with diffuse
babble noise scenarios.

results from this and the following evaluations are shown in Fig.
1. As can be seen in the figure, the M-MMSE constantly deliv-
ers the highest output SNR for all errors, which is expected as it
does not make use of the geometry. The DSB+MMSE and GM-
MMSE methods have a decreasing output SNR for increasing er-
rors, and for high errors, they may even give lower output SNR than
the single-channel S-MMSE method. However, the geometry based
methods have less distortion than the M-MMSE method for all er-
rors. The PESQ scores [26], which are objective measures reflecting
the perceptual quality, show that the GM-MMSE is preferred for er-
rors below 17◦, and the DSB+MMSE below 10◦, when compared
with the M-MMSE method. In the second evaluation, we looked at
the performance versus the source range. The purpose of this is to
see what the effects are of violating the far-field assumption, being
assumed by the GM-MMSE and DSB+MMSE methods. Here, the
filters show approximately the same trend, i.e., almost constant out-
put SNR, slightly increasing signal distortion, and increasing PESQ
scores for an increasing range. Moreover, in terms of PESQ scores,
the best performance is obtained by the GM-MMSE method fol-
lowed by the M-MMSE and DSB+MMSE methods having similar
performance and then the S-MMSE method. It should be noted that
perfect DOA information is assumed here, so the M-MMSE method
will be closer to or better than the GM-MMSE method in practice.
Finally, we measured the performance versus the number of micro-
phones. In this experiment, the microphone spacing was 0.05 m.
We see that all the multichannel methods benefit from having fur-
ther microphones in terms of output SNR and PESQ scores. How-
ever, the gain in PESQ scores is higher with the GM-MMSE and
DSB+MMSE methods than with the M-MMSE approach. Again,
the M-MMSE method is expected to perform better than the others
in practice according to the first evaluation, since we will have DOA

estimation errors due to reverberation, interferers, and background
noise.

5. DISCUSSION

The topic considered in the paper is multichannel enhancement of
speech, which is a classical signal processing problem within the au-
dio and speech processing community. Most existing methods for
this problem rely on second-order statistics of the desired speech
signal, the noise signal, or both. However, obtaining these statis-
tics in practice is difficult due to the nonstationarity of the speech
and noise. An alternative approach is to use model-based approach,
e.g., to exploit the periodicity of voiced speech through a harmonic
model. With this in mind, we proposed two multichannel speech
enhancement methods: the first is derived independent of the micro-
phone array geometry and the speech location, whereas this infor-
mation is utilized in the other method. Compared to existing har-
monic multichannel enhancement methods, the proposed methods
are formulated in the time-domain, which means that we can ensure
a distortionless filter design by meeting a few linear constraints. By
introducing two different methods, we investigate which approach is
preferable to use in scenarios with, e.g., DOA errors and violation of
far-field assumptions. Our evaluation in terms PESQ scores showed
that if the DOA is known, we should apply the method utilizing the
geometry even if the far-field assumptions are violated. However,
if we introduce DOA errors, which are always present and signifi-
cant in practice, the geometry independent approach is preferable in
terms of both output SNR and PESQ scores. Finally, the proposed
methods also show output SNR and PESQ improvements over the
comparison methods.
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