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ABSTRACT

We address the problem of sound source localization with a
microphone array mounted on a micro aerial vehicle (MAV). Due
to the noise generated by motors and propellers, this scenario is
characterized by extremely low signal-to-noise ratios (SNR). Based
on the observation that the energy of MAV sound recordings is
usually concentrated at isolated time-frequency bins, we propose
a time-frequency processing framework to address this problem.
We first estimate the direction of arrival of the sound at individual
time-frequency bins. Then we formulate a set of spatially informed
filters pointing at candidate directions in the search space. The
output of the filtering tends to present high non-Gaussianity when
the spatial filter is steered towards the target sound source. Finally,
by measuring the non-Gaussianity of the spatial filtering outputs
we build a spatial likelihood function from which we estimate
the direction of the target sound. Experimental results with real-
recorded MAV ego-noise show the superiority of the proposed
method over the state of the art in performing source localization
robustly.

Index Terms— Ego-noise, micro aerial vehicle, microphone
array, source localization, time-frequency processing

1. INTRODUCTION

Multirotor micro aerial vehicles (MAV) are increasingly used as
mobile sensing platforms equipped with a variety of sensors in
a wide range of applications, such as surveillance, broadcasting,
and search and rescue [1-8]. When an MAV is equipped with
microphones for multichannel recording, sound source localization
is an important task that aims to estimate the location of a target
sound, such as a human speech or an emergency whistle [8—11].
However, this task is affected by strong ego-noise, which masks the
target sound and degrades the recording quality significantly [12].
The motors and propellers, which contribute to the ego-noise, are
much closer to the microphones than the emitter of the target
sound, thus resulting in extremely low signal-to-noise ratios (SNR),
e.g. -20 dB [13]. The spectrum of the nonstationary ego-noise
depends on the rotation speed of each motor and changes with the
varying MAV behavior.

Although microphone array-based source localization has been
investigated intensively [14—17], most algorithms are developed for
indoor environments with a relatively high SNR (e.g.>0 dB). Only a
few works have been reported on the challenging MAV-based source
localization in extremely low-SNR scenarios (e.g.<-15 dB). These
works can be classified as unsupervised and supervised. Unsu-
pervised approaches perform source localization using microphone
signals only. Examples include steered response power with phase
transform (SRP-PHAT) [8, 18] and multiple signal classification

978-1-5090-4117-6/17/$31.00 ©2017 IEEE

496

902 Target sound

Time [s1

(a) (b)

Fig. 1. (a) A multirotor MAV with an array of M = 8 microphones
capturing a target sound. (b) Time-frequency spectrum of the ego-noise and
a speech signal (present during 5-7 s and indicated with a red box) recorded
by microphone 71 on an operational MAV. The harmonics of the ego-noise
and the speech signal generally occupy different time-frequency bins. Our
method exploits this time-frequency sparsity.

(MUSIC) [9, 19]. SRP-PHAT, which computes a spatial likelihood
map by exploiting the correlation between microphone signals, tends
to show degraded performance in MAV-based applications when
the target sound is masked by strong ego-noise [8, 18]. MUSIC
computes a spatial likelihood map by decomposing the observed
signal into orthogonal signal and noise subspaces. The algorithm
assumes uncorrelated noise components at the microphones and thus
the signal and noise subspaces can be discriminated easily. In MAV-
based applications the discrimination becomes difficult since the
ego-noise is directional and stronger than the target sound. GEVD-
MUSIC (Generalized eigen-value decomposition MUSIC) exploits
a noise correlation matrix as additional information to improve
robustness to noise. Although several schemes have been proposed
to blindly estimate the noise correlation matrix from the microphone
signal [9, 19], the estimation is usually inaccurate due to the
nonstationarity of the ego-noise. To solve this problem, supervised
approaches (which need additional sensors to monitor the behavior
of the MAV) were proposed to build a noise template database, from
which the noise correlation matrix can be estimated corresponding
to the motor rotation speed and the MAV behavior [20-22]. The
accurate ego-noise estimation enables supervised approaches to
improve source localization performance in low-SNR scenarios.
However, the need for dedicated monitoring sensors limits the
versatility and applicability of supervised approaches.

In this paper we propose an unsupervised approach for sound
source localization from a microphone array mounted on an MAV.
The ego-noise mainly consists of harmonic components whose
energy peaks at isolated harmonic frequencies (Fig. 1). Likewise,
the target sound (e.g. human speech or emergency whistle) mainly
consists of harmonic components. Based on the observation that
the harmonics of the ego-noise and the target sound usually occupy
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Fig. 2. Block diagram of the proposed method for sound source localization
with M microphones mounted on an MAV. For the definition of the variables
please see the body of the paper.

different time-frequency bins, i.e. at most one source is dominant
in one time-frequency bin, we propose a method which exploits
the time-frequency sparsity of the MAV sound recording. We first
estimate the direction of arrival (DOA) of the sound at each time-
frequency bin. Then we formulate a set of spatial filters each
pointing at a specific direction. Assuming that the spatial filter
corresponding to the target direction can well extract the target
sound and that the extracted target sound usually has higher non-
Gaussianity (i.e. time-frequency sparsity) than the input microphone
signal, we build a spatial likelihood function by measuring the non-
Gaussianity of the set of spatial filtering outputs.

While the idea of local DOA-based spatial filtering emerged in
recent years mainly for indoor speech processing [24,25], we apply
for the first time this technique to MAV-based sound processing and
combine it with a non-Gaussianity measure for source localization.
With spatial filters suppressing directional ego-noise, the proposed
method can obtain improved source localization performance in
extremely low-SNR scenarios.

2. PROPOSED METHOD

2.1. Preliminaries

Let a circular array with M = 8 microphones be mounted on a
multirotor MAV. Let 7, = [F'ma, 7'my]" be the location of the m-th
microphone. The locations of the microphones R = [r1,- - , 7]
are assumed to be known. Let a target sound source located
in the far field emit sound with DOA 64. The corresponding
microphone signal, &(n) = [xl (n),---,xnm(n)]", contains the
target sound, s(n) = [si(n ) -, sm(n)]T, and the ego-noise,
v(n) = [vi(n), -, o))", ie. x(n) = s(n) + v(n). This
signal can be written in the short-time Fourier transform (STFT)
domain as x(k,l) = s(k,l) + v(k,l), where k and [ denote the
frequency and frame indices, respectively. Let K and L denote the
total number of frequency bins and time frames, respectively.

Since the motors and propellers are closer to the microphones
than the target sound source, the MAV sound recording usually
presents an extremely-low SNR. We assume a low-reverberant
environment without natural wind and that the MAV hovers stably
while recording the sound from a static source (i.e. the locations of
the microphones and the sound source are fixed).

We consider a single target sound from the noisy microphone
signal and aim (i) to detect the existence of the target sound and (ii)
to estimate its direction. To this end, we compute a spatial likelihood
function p(6) that presents a peak value corresponding to the DOA
of the target sound.

In the following, we present the proposed method, which is com-
posed of three main steps (Fig. 2): local DOA estimation, spatially
informed filtering and spatial likelihood function computation.
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2.2. Local DOA estimation

Given the microphone signal x(k,[) and the microphone locations
R, the DOA of the sound at each time-frequency bin can be
estimated by building a local spatial likelihood function [25]
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where fi, denotes the frequency at the k-th bin; 7(m1, me,0) =

r -7 — |7 -7 .
Iy =roll=lirmy =70l Genotes the delay between two microphones

mq and m; with respect to the sound coming from 6, where r¢ is
the location of the far-field sound source with DOA 6 and c is the
velocity of sound. The term e/2™/%7(m1:m2.9) represents the inter-
channel phase difference, theoretically computed with the delay
Ty (k, l)zm2 (k1)
[2my (kD) @my (k)]
difference measured from z,,, and x,,, where the superscript ‘*’
denotes complex conjugation; the operator SR{-} denotes the real
component of the argument. The spatial likelihood v+ tends to
present a high value if these two inter-channel phase differences are
consistent with each other. The DOA can thus be estimated as

7; the term represents the inter-channel phase
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2.3. Spatially informed filtering

The localization results at individual time-frequency bins can be
used to construct a spatially informed filter, which extracts the sound
coming from a direction 6 [24,25]. To implement this spatial filter,
we first detect the time-frequency bins that belong to the desired
direction, assuming the DOAs estimated at these time-frequency
bins to be Gaussian distributed with mean 6 and stand variance o.
The detection is then performed by measuring the closeness of each
time-frequency bin to the direction 6:

(Ore(k, 1) — 9)2> 7

202

ca(k,1,0) = exp (— 3)
where the closeness measure ¢4 lies in the interval [0, 1], with a
higher value indicating a higher probability that the (k,[)-th bin
belongs to the target sound. Next, we calculate the correlation matrix
of the sound signal from the direction 6 as
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where the closeness measure cq(k, [, 6) indicates the contribution of
the (k,1)-th bin to the correlation matrix, and the superscript ()"
denotes the Hermitian transpose. Given this estimated target sound
correlation matrix, an adaptive beamformer can be formulated easily.
We use the multichannel Wiener filter [26]

O (k1) (k,1,0), Q)

where ¢, (k,l,0) denotes the first column of ®.,(k,[,6), and
P, (k,1) is the correlation matrix of the microphone signal, which
L
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The sound coming from € is extracted as
yre(k, 1,0) = wie(k, 1, 0)x(k, 1). (6)



In this way we can construct multiple spatial filters pointing at
a set of predefined candidate directions {61, --- ,0p} in the search
space.

2.4. Spatial likelihood function

We compare the non-Gaussianity of the D spatial filtering outputs.
The non-Gaussianity of a sequence can be measured with its
statistical kurtosis value, where a higher kurtosis indicates a higher
non-Gaussianity [27]. The kurtosis value £(k, 0) is calculated at
each frequency bin:

f(k,g) = K(QTF(kve))v @)

where §..(k, ) denotes the time sequence |yr(k,:, )| and K(-)
denotes the kurtosis value of the sequence. Considering the whole
frequency band, we calculate a global spatial likelihood function as

K
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We normalize (8) into the interval [0, 1] by using
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where min(-), max(-), and mean(-) denote the minimum, maximum
and mean values of the sequence; N (-) denotes the normalization
procedure where pry is a predefined threshold. A sequence with a
kurtosis value lower than pry will be detected as noise and hence has
its spatial likelihood set to zero. We set pry = 5, which is slightly
higher than the kurtosis value of Gaussian noise [27].

3. RESULTS

We compare the proposed spatial filtering-based algorithm (SP),
with six source localization algorithms, namely the well-known
SRP-PHAT algorithm (SRP) [14]; three GEVD-MUSIC algorithms:
GMUSIC, which assumes the noise correlation matrix to be
known [19]; MUSIC, which uses an identity matrix as the estimate
of the noise correlation matrix [19]; iMUSIC, which estimates
the noise correlation matrix incrementally from the microphone
signal [19]; and two additional time-frequency processing-based
algorithms we create based on the observations we discussed in
this paper: the histogram-based algorithm (Hist) and a combined
algorithm (HiSP). Hist builds a histogram using the localization
results {6r(+)} at all time-frequency bins [23,28], i.e. pus(0) =
H ({6}), where H(-) denotes building a histogram of the values
in the sequence. The spatial likelihood function is obtained by
normalizing the histogram with pus(6) = N (pux(0)). HiSP
combines Hist and SP by using puise(0) = N (puie(0) + pse(6)).
SP performs robustly in low-SNR scenarios, where the kurtosis
difference between input and output signals is evident. However, this
difference becomes less evident in high-SNR scenarios, decreasing
the localization resolution. In contrast, Hist has a high localization
resolution in high-SNR scenarios but degraded performance in
low-SNR scenarios. HiSP combines these two complementary
algorithms to achieve robust performance for different SNRs.

We evaluate the source localization performance in terms of
target sound detection ability, which is measured by the normalized
spatial likelihood value at the target direction, i.e. p(64). Lying in
the interval [0, 1], the higher p(6q), the more capable the algorithm
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Fig. 3. Intermediate results by SP, Hist and HiSP for a target sound with
DOA 0° and input SNR -15 dB. (a)-(b): input and enhanced signals; (c)-(f):
results for SP; (g)-(h): results for Hist; (i)-(j): results for HiSP.

is to detect the target sound. For this reason, the spatial likelihood
function obtained by each algorithm is normalized with (9) by setting
prn = 0 (except in SP pry = 5). At sampling rate 8 kHz, we
set the STFT frame length as 1024 with half overlap. For SP,
we set 0 = 10° in (3). The search space {61, -+ ,0p} is set as
-180° — 180° with a step of 1°. This search space is also used as the
histogram bin for Hist. The duration of the test signal is 5 s.

We built a hardware prototype with a circular microphone array
consisting of eight omnidirectional lavelier microphones fixed above
a 3DR IRIS quadcopter [13]. The diameter of the array is 0.2 m.
The microphone signal is generated by adding the ego-noise and the
target sound at different input SNRs. The ego-noise is recorded in
a room with reverberation time of 200 ms [13]. The MAV remains
physically static and the motor speed is varied during the recording.
The target sound is simulated with the image-source method [29] in a
space of size 20m x20m x4m and with reverberation time of 200 ms.
A speech source is placed 10 m away and with a varying DOA from
-180° to 180°, with an interval of 30°.

Fig. 3 depicts the intermediate processing results by SP, Hist
and H1 SP for a target sound coming from 0° with input SNR -15 dB.
Fig. 3(a) depicts the time-frequency spectrum of the input signal at
one microphone, where the target sound is severely masked by the
ego-noise. However, as shown in Fig. 3(c), performing local DOA
estimation can still detect the time-frequency bins that belong to the
target sound (i.e. at DOA 0°). Fig. 3(d) depicts the kurtosis function
&(k, 0), where a high kurtosis value can be observed at DOAs around
0°. Fig. 3(e) depicts pse(6), the kurtosis value averaged across the
whole frequency band, and Fig. 3(f) the normalized value psp(6). A
peak can be clearly observed around 0°. Fig. 3(g) depicts pui(0),
the histogram of local DOA estimates, and Fig. 3(h) the normalized
value puis(0). A peak can be observed at 0°, which is much weaker
than the peak of the ego-noise around -90°. Fig. 3(i) depicts the sum
of psp(0) and puie(0), and Fig. 3(j) the normalized value puise(6).
The peak of the target sound is also clearly observed. Additionally,
Fig. 3(b) depicts the time-frequency spectrum of the spatial filtering
output pointing at 0°. The target sound is well extracted while the
ego-noise is effectively suppressed.
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Fig. 4. Spatial likelihood functions obtained by various source localization
algorithms for a target sound with DOA 0°: (a) input SNR: oco; (b) input
SNR: -15 dB.

Fig. 4 depicts the spatial likelihood function obtained by the
considered algorithms for a target sound coming from 0°, with
input SNRs oo and -15 dB, respectively. In Fig. 4(a) all the
algorithms can estimate the DOA of the target sound correctly when
SNR;, = oo, except that the localization resolution of SP is much
lower. In Fig. 4(b) the considered algorithms perform differently
for SNRi, = -15 dB. With prior knowledge of the noise correlation
matrix, GMUSIC shows a sole peak at the target direction. In
contrast, MUSIC and iMUSIC do not show evident peaks at the
target direction, due to inaccurate estimation of the noise correlation
matrix. SRP and Hist show strong peaks at ego-noise directions
but weak peaks at the target direction. SP shows a sole peak at the
target direction. HiSP shows two peaks, including one at the target
direction.

Fig. 5(a) depicts the spatial likelihood values at the target
direction, p(64), obtained by the considered algorithms when the
target sound comes at 4 = 0°, with a varying input SNR from
-25 dB to -5 dB. For all algorithms the obtained p(64) rises
with increasing SNRi,. GMUSIC performs the best among all the
algorithms, achieving a p(f;) which is close to 1 for all SNR,.
SRP performs the worst. Hist, SP and HiSP evidently outperform
MUSIC and iMUSIC. SP obtains a p(64) which is higher than other
algorithms, especially when SNR;, < -10 dB. Hist obtains a p(64)
which is close to SP when SNR;, > -10 dB, but drops quickly with
decreasing SNRi;, when SNR;, < -10 dB. HiSP obtains a p(fq)
which is between SP and Hist when SNR;, < -10 dB.

Fig. 6 depicts the spatial likelihood values at the target direction,
p(04), obtained by the considered algorithms when varying the DOA
of the target sound. We consider two input SNRs: -20 dB and -10 dB.
For both scenarios, GMUSIC, SP, and HiSP show almost constant
performance for various DOAs. For SNR;, = -10 dB, Hist shows
constant performance for various DOAs. However, its performance
degrades significantly for SNR;, = -10 dB. In addition, Hist
shows high spatial likelihood values at DOAs 90° and -90°, the
directions where the ego-noise may come from. Hist outperforms
SRP especially when SNR;, = -20 dB.
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Fig. 6. Spatial likelihood values p(64) at the target direction obtained by
various source localization algorithms for a target sound with a varying DOA
04. (a) input SNR: -20 dB; (b) input SNR: -10 dB.

Finally, we consider a scenario where the ego-noise and the
target sound are recorded separately and added at different input
SNRs. A loudspeaker is placed 3 m away from the MAV at the
direction 160°, playing speech signals as the target sound [13].
Fig. 5(b) depicts the evaluation results. In comparison to Fig. 5(a),
GMUSIC shows degraded performance for real-recorded speech,
primarily because the microphones were not calibrated. This
also leads to degraded performance of MUSIC and iMUSIC. SRP
performs the worst. SP outperforms all the other algorithms except
GMUSIC and it is followed by HiSP.

4. CONCLUSION

We proposed a time-frequency processing approach that exploits
the time-frequency sparsity of the MAV sound recording for source
localization. By estimating the DOA locally at individual time-
frequency bins, the proposed spatially informed filter extracts the
sound from a desired direction and suppresses other directions
effectively. The output signal tends to show a high kurtosis
value when the spatial filter corresponds to the target direction.
Experimental results demonstrate the advantage of the proposed
method in the presence of strong ego-noise.

In our future work we will combine the spatial likelihood value
and the mobility of the MAV within a tracker, and investigate the
performance of the proposed algorithms in real environments where
multiple sound sources as well as natural and motion-induced wind
pose additional challenges.

Acknowledgement: This work was supported in part by the
ARTEMIS-JU and the UK Technology Strategy Board (Innovate
UK) through the COPCAMS Project, under grant 332913.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

5. REFERENCES

K. Daniel, S. Rohde, N. Goddemeier, and C. Wietfeld,
“Cognitive agent mobility for aerial sensor networks,” IEEE
Sensors J., vol. 11, no. 11 pp. 2671-2682, Jun. 2011.

D. Floreano and R. J. Wood, “Science, technology and the
future of small autonomous drones,” Nature, vol. 521, pp. 460-
466, May 2015.

F. Remondino, L. Barazzetti, F. Nex, M. Scaioni, and
D. Sarazzi, “UAV photogrammetry for mapping and 3D
modeling - current status and future perspectives,” Int. Archives
Photogrammetry, Remote Sensing Spatial Inform. Sci., Zurich,
Switzerland, 2011, pp. 25-31.

F. Poiesi and A. Cavallaro, “Distributed vision-based flying
cameras to film a moving target,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robot. Syst., Hamburg, Germany, 2015, pp. 2453-2459.
J. Klapel, Acoustic Measurements with a Quadcopter:
Embedded System Implementations for Recording Audio from
Above, Master Thesis, Norwegian University of Science and
Technology, 2014.

S. Yoon, S. Park, Y. Eom, and S. Yoo, “Advanced sound
capturing method with adaptive noise reduction system for
broadcasting multicopters,” in Proc. IEEE Int. Conf. Consum.
Electron., Las Vegas, USA, 2015, pp. 26-29.

T. Ishiki and M. Kumon, “Design model of microphone arrays
for multirotor helicopters,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robot. Syst., Hamburg, Germany, 2015, pp. 6143-6148.

M. Basiri, F. Schill, P. U. Lima, and D. Floreano, “Robust
acoustic source localization of emergency signals from micro
air vehicles,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst.,
Vilamoura-Algarve, Portugal, 2012, pp. 4737-4742.

K. Okutani, T. Yoshida, K. Nakamura, and K. Nakadai,
“Outdoor auditory scene analysis using a moving microphone
array embedded in a quadrocopter,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robot. Syst., Vilamoura-Algarve, Portugal, 2012,
pp. 3288-3293.

S. Uemura, O. Sugiyama, R. Kojima, and K. Nakadai,
“Outdoor acoustic event identification using sound source
separation and deep learning with a quadrotor-embedded
microphone array,” in Proc. Int. Conf. Adv. Mechatronics,
Tokyo, Japan, 2015, pp. 329-330.

S. Lana, K. Takahashi, and T. Kinoshita, “Consensus-
based sound source localization using a swarm of micro-
quadrocopters,” in Proc. Robot. Soc. Japan, Tokyo, Japan,
2015, pp. 1-4.

G. Sinibaldi and L. Marino, “Experimental analysis on the
noise of propellers for small UAV,” Appl. Acoust., vol. 74, no.
1, pp. 79-88, Jan. 2015.

L. Wang and A. Cavallaro, “Ear in the sky: Ego-noise
reduction for auditory micro aerial vehicles”, in Proc. Int.
Conf. Adv. Video Signal-Based Surveillance, Colorado Springs,
USA, 2016, pp. 1-7.

H. G. Okuno and K. Nakadai, “Robot audition: Its rise and
perspectives,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., Brisbane, Australia, 2015, pp. 5610-5614.

S. Argentieri, P. Danes, and P. Soueres, “A survey on
sound source localization in robotics: From binaural to array
processing methods,” Computer Speech Lang. vol. 34, no. 1,
pp. 87-112, 2015.

L. Wang, T. K. Hon, J. D. Reiss, and A. Cavallaro, “An
iterative approach to source counting and localization using

500

[17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

two distant microphones,’, IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 24, no. 6, pp. 1079-1093, Jun. 2016.

L. Wang, J. D. Reiss, and A. Cavallaro, “Over-determined
source separation and localization using distributed micro-
phones,”, IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 24, no. 9, pp. 1569-1584, Sep. 2016.

M. Basiri, E. Schill, P. Lima, and D. Floreano, “On-board
relative bearing estimation for teams of drones using sound,”,
1IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 820-827, 2016.

T. Ohata, K. Nakamura, T. Mizumoto, T. Taiki, and L. Nakadai,
“Improvement in outdoor sound source detection using a
quadrotor-embedded microphone array,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robot. Syst., Chicago, USA, 2014, pp. 1902-
1907.

P. Marmaroli, X. Falourd, and H. Lissek, “A UAV motor
denoising technique to improve localization of surrounding
noisy aircrafts: proof of concept for anti-collision systems,”
in Proc. Acoust., 2012, pp. 1-6.

K. Furukawa, K. Okutani, K. Nagira, T. Otsuka, K.
Itoyama, K. Nakadai, and H. G. Okuno, “Noise correlation
matrix estimation for improving sound source localization by
multirotor UAV,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot.
Syst., Tokyo, Japan, 2013, pp. 3943-3948.

G. Ince, K. Nakadai, and K. Nakamura, “Online learning for
template-based multi-channel ego noise estimation,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robot. Syst., Vilamoura-Algarve,
Portugal, 2012, pp. 3282-3287.

O. Yilmaz and S. Rickard, “Blind separation of speech
mixtures via time-frequency masking,” IEEE Trans. Signal
Process., vol. 52, no. 7, pp. 1830-1847, Jul. 2004.

O. Thiergart, M. Taseska, and E. A. P. Habets, “An informed
parametric spatial filter based on instantaneous direction-of-
arrival estimates,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 22, no. 12, pp. 2182-2196, Dec. 2014.

K. Kowalczyk, O. Thiergart, M. Taseska, G. Del Galdo,
V. Pulkki, and E. A. P. Habets, “Parametric spatial sound
processing: a flexible and efficient solution to sound scene
acquisition, modification, and reproduction,” [EEE Signal
Process. Mag., vol. 32, no. 2, pp. 31-42, Mar. 2015.

S. Doclo and M. Moonen, “GSVD-based optimal filtering
for single and multimicrophone speech enhancement,” /EEE
Trans. Signal Process., vol. 50, no. 9, pp. 2230-2244, Sep.
2002.

A. Hyvarinen, J. Karhunen, and E. Oja, Independent
Component Analysis, New York, USA: John Wiley & Sons,
2004.

D. Pavlidi, A. Griffin, M. Puigt, and A. Mouchtaris, “Real-
time multiple sound source localization and counting using a
circular microphone array,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 21, no. 10, pp. 2193-2206, Oct. 2013.

J. B. Allen and D. A. Berkley, “Image method for efficiently
simulating small-room acoustics,” J. Acoust. Soc. Amer., vol.
65, no. 4, pp. 943-950, 1979.



