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ABSTRACT

This study introduces a machine hearing system for robot au-
dition, which enables a robotic agent to pro-actively minimize
the uncertainty of sound source location estimates through
motion. The proposed system is based on an active explo-
ration approach, providing a means to model and predict ef-
fects of the agent’s future motions on localization uncertainty
in a probabilistic manner. Particle filtering is used to estimate
the posterior probability density function of the source posi-
tion from binaural measurements, enabling to jointly assess
azimuth and distance of the source. The framework allows
to infer and refine a policy to select appropriate actions via
a Monte Carlo exploration approach. Experiments in simu-
lated reverberant conditions are conducted, showing that ac-
tive exploration and the incorporation of distance estimation
significantly improve localization performance.

Index Terms— sound source localization, robot audition,
active listening, particle filters, Monte Carlo exploration

1. INTRODUCTION

An essential part of auditory scene analysis (ASA) is the lo-
calization of sound sources in the environment [1]. Recently,
this task has been addressed by various studies in the context
of robot audition. A significant advantage of robotic agents
over static acoustic sensors is the ability to move and actively
explore the environment. This has triggered research on al-
gorithms for active listening which incorporate feedback into
the audition process. A prominent area of research in this
context is active localization. Inspired by the abilities of hu-
man listeners to improve the assessment of auditory scenes
through head and body motions [2], this has lead to a variety
of approaches for different applications.

An early study on how head movements are utilized by
humans to resolve front-back ambiguities in sound localiza-
tion was introduced in [3]. Based on these findings, sev-
eral computational localization models incorporating head-
movements have recently been introduced [4, 5, 6]. Addition-
ally, methods based on whole-robot motion were proposed,
using either microphone arrays [7] for auditory simultaneous
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localization and mapping (SLAM) or binaural sensors [8, 9]
for active localization of sound sources.

An important question in this context is, how robot motion
can optimally support localization. For instance, the frame-
work introduced in [9] describes an information-based feed-
back control scheme. It selects controls to maximize informa-
tion gain of the estimated posterior probability density func-
tion (PDF) representing the assumed source location. Similar
approaches have also been proposed in the broader context of
active exploration, aiming at maximizing the robot’s knowl-
edge about the environment [10, 11]. The framework pro-
posed in this study follows similar ideas, but differs from the
previously described approaches in two important aspects:

Firstly, an extended binaural localization model is intro-
duced, which incorporates azimuth and distance information
into the localization process. Binaural models for sound dis-
tance estimation based on the direct-to-reverberant energy ra-
tio (DRR) [12] or statistical signal parameters [13] have al-
ready been proposed. In this work, sound distance is mod-
eled using the interaural coherence (IC) of reverberant bin-
aural signals, which was originally described in [14]. It was
reported that a decreasing DRR results in a decrease of cor-
relation between both binaural channels, which can be ap-
proximately represented by the IC. The current study shows
that incorporating distance information improves the localiza-
tion abilities of the robotic agent in reverberant environments,
compared to a conventional bearing-only observation model.

Secondly, a closed-loop feedback control scheme is pro-
posed, aiming at minimizing the entropy of the belief state
while approaching a specific goal position. The robot mo-
tion will be chosen from a set of pre-defined actions based
on a Monte Carlo exploration (MCE) approach [11, 15]. This
allows for the selection of movements by minimizing the pre-
dicted localization uncertainty. This approach extends previ-
ously proposed methods [8, 9] with the possibility for trade-
offs between exploratory and goal-direction motions.

2. SYSTEM OVERVIEW

The proposed framework follows a modular approach, con-
sisting of individual building blocks which constitute a non-
linear, closed-loop feedback control system. Detailed de-
scriptions of all system components will be given below.
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2.1. Robot platform and binaural head

A binaural Knowles Electronics Manikin for Acoustic Re-
search (KEMAR) dummy head, mounted on a two-wheel dif-
ferential drive robotic platform, is considered throughout this
study. The acoustic properties of the dummy head are cap-
tured by head-related impulse responses (HRIRs) from the
CIPIC HRIR database [16].

2.2. Binaural front-end

An auditory front-end as proposed in [17] is used to extract
binaural cues from the dummy head’s ear signals, sampled
with a rate of fs = 16 kHz. Each channel of the ear sig-
nals is decomposed into L = 32 auditory channels using
a phase-compensated gammatone filterbank. Binaural cues,
namely interaural time differences (ITDs), interaural level dif-
ferences (ILDs) and IC, are computed and integrated across
all frequency channels at the filterbank output, using non-
overlapping time frames with a length of 25ms. All binau-
ral cues are composed into a 3-dimensional observation vec-
tor ŷk at each time step k.

2.3. System dynamics

The localization model used in this study assumes a generic
nonlinear state space representation

xk =

[
xS,k

xR,k

]
=

[
xS,k−1

f(xR,k−1, uk)

]
+ vk (1)

yk = g(xk) + nk, (2)

where xk and yk denote the state and observation vectors and
uk =

[
uL,k uR,k

]
, u{L,R},k ∈ [−1, 1] represents the con-

trol input at the left and right wheel actuators. The system dy-
namics in Eq. (1) is composed of two augmented state vectors
xS,k =

[
mx,k my,k

]T
and xR,k =

[
px,k py,k θk

]T
,

representing the position of the sound source in Cartesian
coordinates and the robots pose including its heading direc-
tion θk, respectively. The sound source is assumed to be
static up to state noise, whereas the robot dynamics is gov-
erned by a nonlinear motion model f(xR,k−1, uk) [11]. Ob-
servations are predicted using a nonlinear mapping function
g(xk), which will be discussed in detail in Sec. 2.4. Both
state and measurement noise characteristics are modeled as
additive, zero-mean Gaussian random variables vk and nk

with corresponding covariance matrices Q and R.

2.4. Measurement model

The measurement model in Eq. (2) introduces a nonlinear
mapping function g(xk) from states xk to observations yk.
As described previously, ITDs, ILDs and IC are used as pri-
mary binaural cues for the proposed localization model. ITDs
and ILDs are cues that correspond to the relative angle φk be-
tween the sound source and the heading direction of the robot.

In addition to that, the IC is used here to model the sound-to-
receiver distance dk. Hence, the systems state is first mapped
from Cartesian to polar coordinates. The mapped state is sub-
sequently used to predict binaural observations by a regres-
sion model

g(xk) = W TΦ(φk(xk), dk(xk)), (3)

where Φ(φk(xk), dk(xk)) represents the regressors and W
is a matrix of regression coefficients. The latter are com-
puted via multivariate linear regression [18, Chap. 3] using
rendered binaural room impulse responses (BRIRs) and white
noise as stimulus signal. A finite Fourier-series represen-
tation [19] is used to model angle-dependent regressors in
Φ(φk(xk), dk(xk)), whereas the distance-related regressors
are modeled via polynomials. Both representations are com-
puted up to an order of 4.

The residuals obtained after training are used to estimate
the measurement noise covariance matrix R. This model ex-
tends the approach from [6], which was restricted to azimuth
prediction based on a spherical head model. The use of a re-
gression function according to Eq. (3) yields a more flexible
framework, which can be trained on both measured or simu-
lated BRIRs.

2.5. State estimation

As this study focuses on source localization and does not con-
sider the full SLAM problem, the robot position is assumed
to be known and deterministic, depending only on the applied
control input. Hence, state estimation reduces to recursively
compute the posterior PDF or belief of the sound source posi-
tion p(xS,k |y1:k, u1:k). This distribution might have multi-
modal characteristics, as front-back confusions can occur due
to the ambiguous nature of binaural cues [2]. This renders
Bayesian filtering methods based on unimodal Gaussian as-
sumptions inappropriate for this task.

To overcome these limitations, a Gaussian mixture sigma-
point particle filter (GMSPPF) [20] is used, which represents
the posterior PDF as a Gaussian mixture model (GMM).
However, an analytic evaluation of the entropy is not pos-
sible for GMMs. To obtain a measure of uncertainty, an
approximation of the belief states entropy is necessary.
As described in [20], the conditional mean state estimate
x̂S,k = E{xS,k |y1:k} and the error covariance matrix
P̂ k = E{(xS,k − x̂S,k)(xS,k − x̂S,k)

T } can be utilized
to approximate the resulting GMM representation of the be-
lief state by a unimodal Gaussian distribution. Hence, the
entropy of the corresponding PDF is defined as

H(xS,k) =
1

2
log
(
(2πe)D · |P̂ k|

)
, (4)

where D = 2 is the dimensionality of the state vector x̂S,k.
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3. MONTE CARLO EXPLORATION

MCE has been widely used in the context of robotics as a
means to actively gain information about uncertain entities
in the environment [11]. A prominent application for ex-
ploration techniques is SLAM, where the robot tries to ac-
tively explore its environment to reduce uncertainty in the
map-building process [21]. However, unrestricted exploration
is usually not desired in many applications, for instance, if the
robot must reach a specific goal position.

Hence, this study focuses on using MCE to construct a
policy π(xk), which allows the robot to select appropriate ac-
tions that maximize a specific reward function which trades
off exploration and goal-directed movements. Thereby, ex-
ploration serves two purposes: using rotational movements to
resolve front-back ambiguities and translatory movements to
support distance estimation via triangulation.

3.1. Algorithm description

A generic MCE algorithm as described in [11, Chap. 17] is
adopted in this work. It aims at finding the action uk+1 that
maximizes the expected reward at the subsequent time step.
To assure computational tractability, the continuous-valued
controls described in Sec. 2.3 are discretized, yielding a set
of Nu actions U = {u(1)

k+1, . . . , u
(Nu)
k+1 }.

A control policy is obtained by running Monte Carlo sim-
ulations that predict the immediate reward of all actions in the
set U , using the system dynamics and measurement model as
a black-box simulator. The procedure is initialized by draw-
ing a set of N samples x̃

(i)
S,k ∼ p(xS,k |y1:k, u1:k), i =

1, . . . , N from the belief distribution at the current time step.
As the robot pose is assumed to be deterministic, the full state

samples are represented as x̃
(i)
k =

[
x̃
(i)
S,k xR,k

]T
. Subse-

quently, a particle filter update step is conducted for all avail-
able actions by sampling observations using the measurement
model ỹk+1 ∼ p(yk+1 | x̃

(i)
k ). The update steps generate a set

of predicted posterior PDFs p(x̃S,k+1 | ỹ1:k+1, u1:k+1) along
with their corresponding entropies, using the approximation
introduced in Eq. (4). This allows for the calculation of the
immediate reward r(x̃(i)

S,k+1, xR,k+1) based on the negative
entropy, which will be explained in Sec. 3.2.

All obtained immediate rewards are averaged across all
Monte Carlo simulations, yielding an approximation of the
expected reward R(xk, uk+1). The policy obtained by MCE
is a greedy policy, as it exclusively considers the expected
reward at the next time step. Hence, action selection can be
conducted by evaluating π(xk) = argmax

uk+1

R(xk, uk+1).

3.2. Reward function

The approach proposed in this study relies on an immedi-
ate reward function that constitutes two possibly conflicting
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Fig. 1: Active exploration in reverberant conditions with
T60 = 250ms. The source position (blue triangle) is located
between the initial robot position and the goal position (black
cross). MCE is performed with λ = 0.5, generating a trajec-
tory (dashed black line) towards the goal which helps reduc-
ing the uncertainty of the particle set (gray dots).

goals: minimizing localization uncertainty by exploratory
movements and reaching a specified goal position xG. Hence,
a trade-off has to be found which balances exploration and
goal-directed actions. This is expressed via the function

r(x̃
(i)
S,k+1, xR,k+1) =

−
(
λ‖xR,k+1 − xG‖2 + (1− λ)H(x̃

(i)
S,k+1)

)
, (5)

where λ ∈ [0, 1] is a trade-off parameter that balances the
minimization of the Euclidean distance from the robot to the
goal position and exploration achieved by considering the en-
tropy predicted for the next time step. The implications of the
choice of λ will be discussed in Sec. 4.3.

An example of a trajectory generated by MCE is depicted
in Fig. 1. It shows that the proposed control scheme makes
use of translatory and rotational movements to support dis-
tance estimation and reduce front-back ambiguities, while ap-
proaching the goal position.
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4. EVALUATION

4.1. Sound database

A collection of speech and non-speech sounds was obtained
using the dataset provided with the “sound event detection
in synthetic audio” task of the Detection and Classification
of Acoustic Scenes and Events (DCASE) challenge 20161.
The database consists of isolated recordings from 11 sound
categories with 20 samples per category.

4.2. Experimental setup

BRIRs of four rooms, comprising reverberation times (T60) of
250ms, 500ms, 750ms and one anechoic room, were created
using HRIRs [16] and the image-source method [22]. Super-
vised training of the measurement model (2) was conducted
using pre-rendered BRIRs on a grid with 25 cm distance and
5◦ azimuth spacing. During evaluation, BRIRs were rendered
online at each time step. The source position was always
placed at the center of the room.

The experimental procedure is based on a 4-fold cross-
validation approach, where BRIRs of three rooms were used
for training. The remaining BRIRs were used for evaluation,
by running 50 simulations with random initial robot poses
and goal positions. Sound samples were randomly selected
from the database and the initial conditions were consistent
over all cross-validation folds. Each simulation was restricted
to a maximum simulated duration of 60 s. All experiments
were repeated for different settings of the trade-off parameter
λ ∈ {0, 0.25, 0.5, 0.75, 1}. An additional experiment with
a bearing-only measurement model was also conducted.

The system performance was assessed by the root mean
square error (RMSE) of the estimated Cartesian sound source
position, averaged over the corresponding sets of simulations.
To better account for outliers that sporadically occur due to
the stochastic nature of the particle filter, the median of the
achieved localization performance is reported in Tab. 1.

4.3. Results and discussion

The results depicted in Tab. 1 show that MCE improves local-
ization performance compared to a fixed trajectory towards
the goal (λ = 1). The best localization accuracy is achieved
for λ = 0.25. However, this comes at the cost of an increased
time to reach the goal position, as depicted in Tab. 2. There-
fore, λmust be chosen appropriately for specific applications.

An interesting outcome of the conducted experiments is,
that localization performance is significantly degraded for
λ = 0. This can be explained by the fact, that the robot is
able to move around freely, without being restricted to ap-
proach the goal position. The policy obtained in this case
tends to steer the robot very close to the assumed source
position. This disturbs the observed binaural cues due to the

1http://www.cs.tut.fi/sgn/arg/dcase2016/

Table 1: Median localization errors (m) for all investigated
acoustic conditions (T60, denoted in the top row). Experi-
ments using a measurement model based on azimuth and dis-
tance (AD) were conducted. For comparison, a bearing-only
measurement model (A) was evaluated with λ = 0.25.

Obs. λ Anec. 250ms 500ms 750ms Avg.

AD 0.00 0.58 0.72 1.63 2.82 1.44
AD 0.25 0.51 0.63 0.70 0.77 0.65
AD 0.50 0.63 0.67 1.05 1.29 0.91
AD 0.75 0.87 0.91 1.18 1.44 1.10
AD 1.00 1.09 1.08 1.36 1.37 1.23

A 0.25 0.82 0.84 0.87 0.89 0.86

Table 2: Time-to-goal (TTG) in (s) and percentage of goal
positions reached (GPR) within the available simulation time,
averaged across all acoustic conditions for four investigated
values of λ (top row). As λ = 0 does not steer the robot
towards the goal position, it is not explicitly shown here.

Metric 0.25 0.5 0.75 1.00

TTG 38.31 14.49 9.94 9.44
GPR 60.00 98.00 100.00 100.00

near-field effect of the HRIRs and large jumps in azimuth
between consecutive time steps. As this is not explicitly cov-
ered by the measurement model, the particle filter is not able
to appropriately predict these effects.

The comparison of the proposed azimuth and distance-
dependent measurement model with the bearing-only ap-
proach shows, that modeling distance information using the
IC helps to further improve the localization capabilities of
the system. The improvements are statistically significant
according to a t-test conducted with p < 0.01.

5. CONCLUSIONS

A machine hearing framework for active binaural localization
on a mobile robot was presented. The experimental results
obtained in simulated acoustic scenes indicate that MCE im-
proves localization accuracy, if the trade-off parameter of the
reward function is properly chosen. Furthermore, the pro-
posed measurement model, which incorporates predictions of
distance-dependent binaural cues, further improves localiza-
tion performance of the system. The proposed framework
provides a starting point for further investigations. For in-
stance, these might focus on adaptively selecting the trade-off
parameter λ. Additionally, the proposed measurement model
could be improved by incorporating additional cues like DRR,
to yield better modeling capabilities of sound distance.
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