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ABSTRACT

This paper presents an approach to the multichannel noise reduction

problem. It first transforms the multichannel noisy speech signals

into the frequency domain. A Householder transformation is then

constructed, which converts the multichannel coefficients in each

frequency bin into two components: one dominated by speech and

the other dominated by noise. A Wiener filter is subsequently formed

to achieve an estimate of the noise in the speech dominated compo-

nent from the noise dominated component. The enhanced speech

is then obtained by subtracting the noise estimate from the speech

dominated component. This approach consists of two critical steps:

construction of the Householder transformation and formation of the

noise reduction Wiener filter. If the source incidence angle is known

a priori, the Householder transformation can be directly constructed

using the steering vector and the optimal estimate of the signal of

interest can then be obtained by applying the Wiener filter. If the

source incidence angle is not known a priori, the Householder trans-

formation can be constructed from a hypothesized incidence angle.

Then, the optimal signal estimate is obtained by searching the maxi-

mum of the variance of the enhanced signal with the Wiener filter in

the interested range of the incidence angle.

Index Terms— Noise reduction, speech enhancement, micro-

phone arrays, Householder transformation, Wiener filter.

1. INTRODUCTION

Noise reduction, also called speech enhancement, refers to the pro-

cess of recovering a speech signal of interest from noisy observa-

tions. It has a wide range of applications in voice communica-

tions and human-to-machine interfaces [1–4]. Most early efforts

focused on the single-channel case primarily because communica-

tion devices at that time were equipped with only a single micro-

phone [5,6]. However, although they are able to improve the signal-

to-noise ratio (SNR) and speech quality, all the single-channel tech-

niques achieve noise reduction at the cost of adding speech distor-

tion [7,8]. Generally, more noise reduction comes with more speech

distortion [6]. Recently, multichannel noise reduction with an array

of microphones has attracted much research and engineering atten-

tion [9–14]. In comparison with the single-channel noise reduction

techniques, the multichannel ones have the potential to achieve better

performance, with less speech distortion or/and more noise reduc-

tion [8, 15]. Moreover, they can also better deal with nonstationary

noise, which is a big issue with the single-channel methods. Be-

cause of these great potentialities, multichannel methods have now

been more and more used in real-world applications and it is com-
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mon today to see smart terminals (e.g., smartphones and tablets) that

contain at least two microphones.

This paper investigates the problem of multichannel noise re-

duction. We first apply the Householder transformation [16–18] to

the multichannel noisy signals. This transformation naturally sep-

arates the multichannel signals into two components: one domi-

nated by speech and the other dominated by noise (or even consist-

ing of noise-only if there is no reverberation). Noise reduction is

then achieved by applying an optimal filter that predicts the noise

in the speech dominated component from the noise dominated one.

The major contributions of this paper are as follows. 1) We apply

the Householder transformation to the multichannel noise reduction

problem in the frequency domain. This transformation separates

the noisy signals into two components with one either consisting

of noise-only or dominated by noise. 2) We develop a multichannel

Wiener filter that can achieve noise reduction based on the output

of the Householder transformation and the knowledge of the source

incidence angle. 3) We also derive a Wiener filter that can work

when the source incidence angle is not known a priori. 4) The per-

formance of the new approach is validated in both the presence and

absence of reverberation.

2. SIGNAL MODEL AND PROBLEM FORMULATION

We consider a uniform linear microphone array consisting of M om-

nidirectional microphones where the distance between two succes-

sive sensors is equal to δ. The received (microphones’) signals, at

the time index t, are written as

ym(t) = gm(t) ∗ s(t) + vm(t) (1)

= xm(t) + vm(t), m = 1, 2, . . . ,M,

where ∗ stands for linear convolution, gm(t) is the acoustic impulse

response from the position of the unknown speech source s(t) to the

mth microphone, xm(t) = gm(t) ∗ s(t) is the convolved speech

signal at the mth sensor, and vm(t) is the additive noise at the mth

sensor. The source signal, s(t), is assumed to be uncorrelated with

the noise terms, vm(t), m = 1, 2, . . . ,M , and all signals are con-

sidered to be real, zero mean, and broadband.

In the frequency domain, at the frequency index f , (1) can be

expressed as [3, 19]

Ym(f) = Gm(f)S(f) + Vm(f) (2)

= Xm(f) + Vm(f), m = 1, 2, . . . ,M,

where Ym(f), S(f), Gm(f), Xm(f), and Vm(f) are the frequency-

domain representations of ym(t), s(t), gm(t), xm(t), and vm(f),
respectively. Let us choose microphone 1 as the reference. The ob-

jective of noise reduction in the frequency domain with multiple mi-
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crophones is then to estimate the desired signal, X1(f), from the M
observations Ym(f), m = 1, 2, . . . ,M , the best way we can.

It is more convenient to write the M frequency-domain micro-

phone signals in a vector form:

y(f) = g(f)S(f) + v(f) (3)

= x(f) + v(f),

where

y(f) =
[

Y1(f) Y2(f) · · · YM (f)
]T

,

x(f) =
[

X1(f) X2(f) · · · XM (f)
]T

= S(f)g(f),

g(f) =
[

G1(f) G2(f) · · · GM (f)
]T

,

v(f) =
[

V1(f) V2(f) · · · VM (f)
]T

,

and the superscript T denotes the transpose operator. Expression (3)

can also be expressed as

y(f) = X1(f)d(f) + v(f), (4)

where d(f) = g(f)/G1(f) is the frequency-domain signal propa-

gation vector.

In the particular case of an anechoic environment, each sensor

output can be modeled as a delayed copy of the source signal con-

taminated by some additive noise. In this case, the signal propaga-

tion vector is [14]

d(f, θ) =
[

1 e−2πfτ0 cos θ · · · e−2(M−1)πfτ0 cos θ
]T

, (5)

where  is the imaginary unit with 2 = −1, τ0 = δ/c is the delay

between two successive sensors at the angle 0◦, with c = 340 m/s

being the speed of sound in air, and θ is the source incidence angle.

Note that (5) becomes the steering vector if one replace the signal

incidence angle θ with the steering angle.

3. NOISE REDUCTION WITH THE HOUSEHOLDER

TRANSFORMATION

We first derive and study the optimal filter in the ideal situation

where there is no reverberation. Let us assume that the source in-

cidence angle θ is known and is equal to 0◦. In this case, we have

d(f) = d(f, 0). We define the Householder transformation [16]

associated with the steering vector, d(f, 0), as

T(f) = IM − 2

bH(f)b(f)
b(f)bH(f), (6)

where IM is the M ×M identity matrix, and

b(f) = d(f, 0) +
√
M i1, (7)

with i1 being the first column of IM . It can be checked that

T(f) is Hermitian and unitary. It is also easy to verify that

T(f)d(f) = −
√
M i1. Now, by left-multiplying both sides of

(3) by −T(f)/
√
M , we get

y
′(f) = − 1√

M
T(f)y(f) = X1(f)i1 + v

′(f), (8)

or, equivalently,

[

Y ′

1(f)
y′

2(f)

]

=

[

X1(f)
0(M−1)×1

]

+

[

V ′

1(f)
v′

2(f)

]

. (9)

One can see how the Householder transformation gives a clear noise

reference signal. Indeed, Y ′

1(f) = X1(f) + V ′

1(f) is the sum of

the desired signal and noise, while the (M − 1)-dimensional vector

y′

2(f) = v′

2(f) contains noise only. Furthermore, V ′

1(f) and v′

2(f)
are (partially) coherent. Based on this transformation, we can deduce

an estimate of X1(f) as follows:

Z(f) = Y ′

1(f)− h
′H(f)y′

2(f) (10)

= X1(f) + V ′

1(f)− h
′H(f)v′

2(f),

where h′(f) is a complex-valued filter of length M−1. SinceX1(f)
in Z(f) is not affected by the filter h′(f), this approach does not

add any distortion to the desired speech signal in this ideal situa-

tion where there is no reverberation and d(f, 0) is known precisely;

otherwise, the filter h′(f) may introduce some distortion.

The variance of Z(f) is

φZ(f) = φY ′

1
(f)−Φ

H
y
′

2
Y ′

1
(f)h′(f)

− h
′H(f)Φy′

2
Y ′

1
(f) + h

′H(f)Φy′

2
(f)h′(f), (11)

where φY ′

1
(f) is the variance of Y ′

1(f), Φy
′

2
Y ′

1
(f) =

E [y′

2(f)Y
′∗

1 (f)], the superscript ∗ denotes the complex-conjugate

operator, and Φy
′

2
(f) = E

[

y′

2(f)y
′H
2 (f)

]

is the correlation matrix

of y′

2(f).
From the minimizing of φZ(f) with respect to h′H(f), we eas-

ily find the optimal Wiener filter:

h
′

W(f) = Φ
−1
y
′

2

(f)Φy′

2
Y ′

1
(f). (12)

The optimal estimate of X1(f) in the Wiener sense is then

ZW(f) = Y ′

1(f)− h
′H
W (f)y′

2(f). (13)

The estimate from this Wiener filter based on the Householder trans-

formation is similar to that of the well-known generalized sidelobe

canceler (GSC) [20]. It can also be shown that this Wiener fil-

ter is equivalent to the minimum variance distortionless response

(MVDR) filter given in [19]. Although equivalence exists between

the two filters, the Wiener filter based on the Householder transfor-

mation is preferable to the MVDR one in practice as Φy
′

2
(f) is much

better conditioned than Φy(f) = E
[

y(f)yH(f)
]

(see Section 5).

In practice, reverberation is inevitable. In the presence of rever-

beration, the signal propagation vector can be modeled as d(f) =
d(f, 0) + e(f), where e(f) is an error vector. In this case, we do

not have a clear separation between the speech-plus-noise and noise

components as in the ideal case. Nevertheless, if no a priori infor-

mation on e(f) is available, we can still estimate X1(f) by follow-

ing the same principles. Now, the desired signal is distorted and the

degree of distortion depends on the level of reverberation.

4. NOISE REDUCTION WITHOUT THE A PRIORI

KNOWLEDGE OF THE DIRECTION OF THE DESIRED

SIGNAL

In this section, we study the more general case where the desired

source signal propagates from the direction θ (0◦ ≤ θ < 180◦); but

the angle θ is not known. Let us consider the ideal scenario where

the signal propagation vector is given in (5) and the signal model

becomes

y(f) = x(f) + v(f) = d (f, θ)X1(f) + v(f). (14)
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Now, let us take any angle θ1 (0◦ ≤ θ1 < 180◦). The House-

holder transformation associated with the steering vector, d (f, θ1),
is defined as

T (f, θ1) = IM − 2

bH (f, θ1)b (f, θ1)
b (f, θ1)b

H (f, θ1) ,

(15)

where b (f, θ1) = d (f, θ1) +
√
M i1. Similarly, left-multiplying

both sides of (14) by −T (f, θ1) /
√
M , we get

[

Y ′

1 (f, θ1)
y′

2 (f, θ1)

]

=

[

X ′

1 (f, θ1)
x′

2 (f, θ1)

]

+

[

V ′

1 (f, θ1)
v′

2 (f, θ1)

]

. (16)

As before, the desired signal, X1(f), is estimated by

Z (f, θ1) = Y ′

1 (f, θ1)− h
′H (f, θ1)y

′

2 (f, θ1) , (17)

where h′ (f, θ1) is a complex-valued filter of length M − 1. The

minimization of the variance of Z (f, θ1) leads to the Wiener filter:

h
′

W (f, θ1) = Φ
−1
y
′

2

(f, θ1)Φy′

2
Y ′

1
(f, θ1) . (18)

As a result, the optimal estimate of X1(f) in the Wiener sense is

ZW (f, θ1) = Y ′

1 (f, θ1)− h
′H
W (f, θ1)y

′

2 (f, θ1) . (19)

Let φZW
(f, θ1) be the variance of ZW (f, θ1). It is clear that

θ = argmax
θ1

φZW
(f, θ1) . (20)

From (20), we can get the direction of the source by scanning the

space from 0◦ to 180◦ and compute each time the corresponding

Wiener filter; then, the optimal filter for noise reduction corresponds

to the angle that maximizes φZW
(f, θ1).

The angle θ can also be estimated according to [21] as

θ = argmin
θ1

φY ′

m

(f, θ1) , m = 2, 3, . . . ,M (21)

or

θ = argmax
θ1

φY ′

1
(f, θ1) , (22)

where φY ′

m

(f, θ1) is the variance of Y ′

m (f, θ1). Therefore, in prac-

tice, one can obtain the estimate of the source incidence angle with

the estimators from (20) to (22). It is worth mentioning that the esti-

mators from (20) to (22) are defined on a narrowband basis. But they

can be extended to process broadband speech signals by combining

the narrowband estimators from different frequency bands as shown

in [21].

5. SIMULATIONS

In this section, we assess the performance of the developed Wiener

filters through simulations. We consider a room of size 4 m×4 m×
3 m. A loudspeaker is placed at (2.5, 2.0, 2.0), which plays back

a speech signal prerecorded from a female speaker in a quiet office

room, and eight omnidirectional microphones are located, respec-

tively, at (x, 2.0, 1.6), where x = 1.30 : 0.04 : 1.58. The acoustic

channel impulse responses from the source to the microphones are

generated with the image model method [22]. Then, the microphone

signals are generated by convolving the source signal with the corre-

sponding simulated impulse responses and adding some noise. We

consider two types of noise: white and diffuse [23]. All the sig-

nals are 30 seconds long and the sampling frequency is 8 kHz. The
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Fig. 1. X ′

1(f) and X ′

m(f) after the Householder transformation in

an anechoic environment: (a) amplitude of X ′

1(f) and X ′

m(f) and

(b) zoomed plot of the amplitude of X ′

m(f), m = 2, 3, . . . ,M .

M = 8, f = 1000 Hz, and the source incidence angle is 0◦.
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Fig. 2. Comparison of the condition numbers of Φy′

2
(f) and Φy(f):

(a) in white noise and (b) in diffuse noise. f = 1000 Hz, iSNR =

10 dB and M = 8.

Wiener filters are implemented in the STFT domain as follows. The

microphone array signals are partitioned into overlapping frames

with a frame size of K = 128 and an overlapping factor of 75%.

A Kaiser window is then applied to each frame and the windowed

frame signal is subsequently transformed into the STFT domain us-

ing a 128-point FFT. The Householder transformation is then con-

structed and applied to the noisy STFT coefficients and the Wiener

filter is subsequently used to reduce the noise. Finally, the inverse

FFT (with overlap add technique) is used to obtain the time-domain

clean speech estimate. In the implementation, all the correlation ma-
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Fig. 3. SNR Performance of the Wiener filter as a function of M :

(a) in diffuse noise and (b) in white noise. iSNR = 0 dB.

trices are computed using a recursive method [3].

We first show the behavior of the signal vector after the House-

holder transformation in an anechoic environment. We use x′

2(f)
to denote the signal leakage after the Householder transformation in

practice (theoretically, X ′

1(f) = X1(f) and x′

2(f) = 0 in ane-

choic environments with known direction-of-arrival (DOA) infor-

mation). We set M = 8 and the desired source propagates from

the angle 0◦. Figure 1 plots the amplitudes of X ′

1(f) and X ′

m(f),
m = 2, 3, . . . ,M , as a function of the frame index at one sub-

band (f = 1000 Hz) after the Householder transformation. It is

clearly seen that the amplitudes of X ′

m(f) are much smaller than

that of X ′

1(f) and they can be considered as zero in comparison with

X ′

1(f). This is consistent with the discussion in Section 3, where we

have shown that the Householder transformation projects x(f) into

a vector that has zeros in all positions but one. Notice that X ′

m(f),
m = 2, 3, . . . ,M , are not completely zero. This is mainly due to

the windowing effect in the overlap-add process.

While theoretical analysis show that the Wiener filter based

on the Householder transformation is equivalent to the traditional

MVDR filter in nonreverberant environments, the former is prefer-

able to use in practice, particularly in fixed-point implementations.

The underlying reason can be explained as follows. The implemen-

tation of the Wiener filter involves the computation of the inverse of

Φy
′

2
(f), which is of size (M − 1) × (M − 1). Since the vector

y′

2(f) consists of either noise-only or dominated by noise, Φy
′

2
(f)

is generally well conditioned, so its inverse can be computed reli-

ably. In comparison, the vector y(f) consists of both the speech of

interest and noise, so the eigenvalue spread of Φy(f) is much larger

than that of Φy
′

2
(f), indicating that Φy(f) is ill conditioned and,

therefore, its inverse is numerically less reliable to compute. To il-

lustrate this, we show the condition numbers of Φy
′

2
(f) and Φy(f),

where the l2-norm condition number of a matrix is defined as

χ(A) = ‖A‖2‖A−1‖2. (23)

Figure 2 plots the results with f = 1000 Hz as a function of the

frame index in both white and diffuse noises (note that similar results

were observed across the interested frequency range for both types

of noise). It is clearly seen that the condition number of Φy(f) is

much larger than that of Φy
′

2
(f) in both noise conditions while the

difference is more significant in diffuse noise. This result certainly

shows that the Wiener filter is numerically more reliable to imple-

ment than the MVDR filter based on the use of the Φy(f) matrix.

The performance of the Wiener filter as a function of the number

of microphones in this moderate reverberant environment (the rever-

beration time, T60, is approximately 200 ms) is plotted in Fig. 3,

where we showed the results in two types of noise: diffuse and white.

For the purpose of comparison, results obtained in the same noisy

but nonreverberant environments are also plotted in Fig. 3. It is seen

from Fig. 3 that the output SNR increases with the number of mi-

crophones. So, the more the number of microphones, the better the

noise reduction performance. Comparing the two noise conditions,

we see that the SNR improvement in diffuse noise is slightly higher

than that in white noise. In white noise, the SNR improvement (the

difference between the input and output SNRs in decibel) is approx-

imately 3 dB if two microphones are used and this improvement

increases if more microphones are used. Theoretically, it can be

checked that the SNR improvement in white noise is approximately

10 log10 M dB, which is corroborated by simulations in Fig. 3(b).

6. CONCLUSIONS

This paper presented a two-step approach to the problem of multi-

channel noise reduction in the frequency domain. In the first step,

a Householder transformation is constructed. In the second step,

a Wiener filter is formed by using the noise-only or noise dom-

inated component to estimate the noise in the speech-plus-noise

component, thereby achieving noise reduction. The construction

of the Householder transformation in each frequency bin requires

the knowledge of the DOA information. If this information is not

known a priori, which is often the case in practice, we derived a

method that combines the noise reduction and DOA estimation to-

gether into one process. Simulations were conducted to validate the

performance of the developed approach in both non-reverberant and

reverberant environments. The results showed that it can improve the

SNR significantly and this improvement increases with the number

of microphones regardless whether there is reverberation or not.

7. RELATION TO PRIOR WORK

Noise reduction has long been a major problem in signal processing

for voice communications and human-machine interfaces [1–10]. A

significant number of efforts have been devoted to this problem in

the literature [11–13, 15]. Most early efforts focused on the single-

channel case primarily as most communication devices at that time

were equipped with only one microphone [5, 6]. Recently, multi-

channel noise reduction with an array of microphones have been in-

tensively investigated [8–10, 24], which has been found to be more

flexible in dealing with noise, i.e., more noise reduction with more

microphones [6, 8].

The Householder transformation has been widely used in many

applications such as in numerical linear algebra and in adaptive sig-

nal processing [17, 25, 26]. Recently, we investigated how to use

this transformation to deal with the problem of direction-of-arrival

(DOA) estimation of acoustic sources [21]. This paper presents our

continued effort in the study of the Householder transformation and

we showed how this transformation can be used to cope with the

problem of multichannel noise reduction. We applied the House-

holder transformation to the multichannel noise reduction problem

in the frequency domain, and developed a multichannel Wiener fil-

ter that can achieve noise reduction with or without the knowledge

of the source incidence angle.
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