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ABSTRACT

In this paper, we investigate blind source separation for audio signals
based on multichannel nonnegative matrix factorization (MNMF) of
magnitude spectrograms in a linear demixed domain. The original
magnitude MNMF by itself is less effective in general acoustic situa-
tions because it discards mutual information between input channels,
which is represented by non-diagonal complex elements of the spa-
tial covariance matrices of them. To deal with this problem, several
linear transformations of the multichannel input have been proposed
in order to diagonalize the covariance matrices without loss of the
mutual information. However, when the number of microphones is
small, it is difficult for static transformations to work well for various
combinations of source positions. For this problem, we first prove
that general linear transformations (linear demixing) can be applied
as preprocessing of the magnitude MNMF, and then confirm that a
transformation adaptive to source positions, such as using frequency
domain independent component analysis, is better than the conven-
tional static transformation by experimental comparison of 2- and
4-channel noisy speech enhancement tasks.

Index Terms— multichannel NMF, ICA, diagonal spatial co-
variance, speech enhancement, source separation

1. INTRODUCTION

Multichannel nonnegative matrix factorization (MNMF) [1,2] with
complex-valued data is a successful technique for underdetermined
blind audio source separations that extends nonnegative matrix fac-
torization (NMF) [3] to multichannel inputs of convolutive mixtures.
Formulations of the MNMF employ complex matrices representing
spatial source mixing process along with two real nonnegative ma-
trices, which represent spectral “bases” and their “activations” the
same as in single channel audio separation by NMF. The use of
the complex matrices allows separation of audio sources by utilizing
spatial information held in the multichannel complex spectra derived
from difference of positions of the sources. However, the factoriza-
tion algorithms on complex spectrograms suffer from large compu-
tational cost and unstable separation performance that depends on
the initial parameters, partly because of the huge number of param-
eters [1,4].

Ozerov and Févotte also introduced an MNMF algorithm on
multichannel magnitude (power of absolute) spectrograms with mul-
tiplicative updates [1], which decomposes multichannel magnitude
spectrograms into nonnegative matrices. The number of parameters
of the magnitude MNMF is smaller than the complex MNMF and
thus has smaller computational cost and is rather robust in a variety
of acoustic situations. However, the separation performance of the
magnitude MNMF is lower than the complex MNMF since it dis-
cards interchannel phase differences. Spatial NMF [5,6], which is a

frequency independent version of the magnitude MNMF, has been
shown to be effective in special situation, such as distributed micro-
phone settings, because spatial information about sources is likely to
appear in magnitudes rather than in phases in distributed cases.

To utilize the phase information in magnitude MNMF or sim-
ilar nonnegative tensor factorization (NTF), several predefined lin-
ear transforms have been proposed for preprocessing of the magni-
tude MNMF, such as beamspace transformation [7] and wavenum-
ber transform [8]. According to our understanding, their intention
is to decorrelate multichannel observations or individual source im-
ages by placing spatial filters pointing in different directions, so that
the interchannel phase information can be utilized in the magnitude
spectra. However, in cases with a small number of microphones,
these predefined static transformation methods do not sufficiently
decorrelate the multichannel signals. In contrast, a method with
transformations adaptively estimated from observation signals such
as frequency-domain independent component analysis (FDICA) [9]
is promising because they attempt to adaptively reduce the correla-
tion between channels.

In this paper, we show that general linear transformation (linear
demixing) can be used as a preprocessing of the magnitude MNMF
instead of the specific transforms mentioned earlier. We refer to this
combination as the demixed domain MNMF (DMNMF). We prove
that the DMNMF is equivalent to the complex MNMF proposed by
Sawada et al. [2] if the demixing transformation perfectly diagonal-
izes the spatial covariance matrices (Section 2). We also show ex-
perimentally (Section 3) that adaptive transformations by FDICA,
which decorrelates the input signals better than conventional static
transformations, offer more precise enhancement of 2-channel and
4-channel noisy speech. The idea of decomposing magnitude spectra
to which general demixing transformation is applied, has some com-
monalities with the source separation technique by Hioka et al. [10].
However, their technique gives previously calculated spatial bases
from the demixing matrices and roughly assumed spatial transfer
functions, while our method can be applied to fully blind settings.
The NTF using wavenumber transformation [8] also gives spatial
bases in advance. Our investigation attempts to generalize these
techniques.

2. LINEAR DEMIXED DOMAIN MULTICHANNEL
NONNEGATIVE MATRIX FACTORIZATION (DMNMF)

This section first reviews the observation and separation models of
the complex MNMF by Sawada et al. [2] and then derives our DM-
NMF method. The complex MNMF and DMNMF are proved to
be equivalent if diagonalization by demixing transformation is per-
formed ideally. Discussion of the demixing matrices, source image
reconstruction, and the algorithm for decomposition of demixed sig-
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nals by multiplicative updates are also given. Semi-supervised train-
ing of spectral bases is also presented at the end of this section.

2.1. Formulation of DMNMF derived from MNMF with complex-
valued data

Let x̃ij = [x̃ij1, ·, x̃ijm, ·, x̃ijM ]t ∈ CM be complex-valued STFT
(short time Fourier transform) coefficients of observations taken by
M microphones. Let i, j, m be frequency, time and microphone in-
dices, respectively, and let ·t denote the vector or matrix transpose.
Let us assume that the observation x̃ij is represented by a multivari-
ate complex Gaussian distributionNc with zero mean

Nc(x̃ij |0, X̂ij) ∝
1

det X̂ij

exp(−x̃h
ijX̂

−1

ij x̃ij), (1)

where X̂ij is an M ×M spatial covariance matrix, which must be
Hermitian positive semidefinite. Let ·h denote Hermitian transpose.
The covariance matrix is modeled by a weighted sum of spatial co-
variances corresponding to acoustic sources:

X̂ij =

K∑
k=1

Hikŝijk. (2)

Here, K is the number of sources, Hik ∈ CM×M is a spatial basis
matrix that is also Hermitian positive semidefinite, and ŝijk ∈ R≥0

is a nonnegative scalar, which corresponds to the magnitude of the k-
th source signal except for its scale. ŝijk can be further decomposed
as

X̂ij =

K∑
k=1

Hik

L∑
l=1

t
(k)
il v

(k)
lj , (3)

where ŝijk =
∑L

l=1 t
(k)
il v

(k)
lj , and t

(k)
il ∈ R≥0 and v

(k)
lj ∈ R≥0 are

a nonnegative spectral basis and an activation for the k-th source,
respectively. L and l denote the number of spectral bases and the
spectral basis index, respectively.

The Sawada’s complex MNMF with Itakura-Saito (IS) diver-
gence is realized by minimizing the following objective function
with respect to X̂ij , that is, the divergence between the covariance
X̂ij and Xij :

dIS(Xij , X̂ij) = logNc(x̃ij |0,Xij)− logNc(x̃ij |0, X̂ij)

= tr(XijX̂
−1

ij )− log detXijX̂
−1

ij −M, (4)

where Xij = x̃ijx̃
h
ij , which is an instantaneous spatial covariance

of the observation, and tr(X) is the trace of the square matrix X .
If the spatial basis matrix Hik and thus the expectation of

the observed covariance Xij are diagonal, then the decomposition
eq. (3) can be rewritten as:

x̂ijm =

K∑
k=1

himk

L∑
l=1

t
(k)
il v

(k)
lj , (5)

where x̂ijm ∈ R≥0 and himk ∈ R≥0 are the m-th diagonal compo-
nent of X̂ij and Hik, respectively. Moreover, the objective function
eq. (4) can be simplified to the scalar IS divergence:

dIS(Xij , X̂ij) ≈
M∑

m=1

(
xijm

x̂ijm
− log

xijm

x̂ijm
− 1

)
, (6)

where xijm = |x̃ijm|2. This diagonalized version of the Sawada’s
MNMF is mathematically equivalent to the magnitude MNMF [1]
with multiplicative updates.

The assumption that the spatial basis matrices Hik are diagonal
is of course unusual, but Hik can be diagonalized by appropriate lin-
ear transformations of the multichannel observation x̃ij represented
by a demixing matrix W i ∈ CN×M (N ≥ 2). Simultaneous trans-
formations of the observation x̃ij and the covariance matrix X̂ij in
eq. (1) by using W i do not change the objective function eq. (4)
because

dIS(Y ij , Ŷ ij) = dIS(Xij , X̂ij), (7)

where ỹij = W ix̃ij , Y ij = ỹij ỹ
h
ij and Ŷ ij = W iX̂ijW

h
i .

Eq. (5) can be rewritten as

ŷijn =

K∑
k=1

gink

L∑
l=1

t
(k)
il v

(k)
lj , (8)

where gink is the n-th diagonal component of Gik = W iHikW
h
i .

If W i is ideally configured, we can obtain Sawada’s complex
MNMF by minimizing the transformed objective function

dIS(Y ij , Ŷ ij) ≈
N∑

n=1

(
yijn
ŷijn

− log
yijn
ŷijn

− 1

)
, (9)

with respect to gink, t(k)il and v
(k)
lj in place of eq. (4). We call this

decomposition the DMNMF.
Even if the expectation of the demixed observation Y ij is not

ideally diagonalized, the decomposition by eq. (8) and eq. (9) is still
meaningful, because the model of the weighted sum of spatial co-
variances in eq. (2) considering only the diagonal elements is ac-
ceptable. In practice, although DMNMF still discards interchannel
phase information, it mitigates the degradation compared with the
original magnitude MNMF [1]. Moreover, a relatively computation-
ally efficient and stable decomposition algorithm such as [11] can be
applied to eq. (8) and eq. (9) the same as for typical NMF and the
magnitude MNMF, for example, to avoid matrix inversion [8].

2.2. Adaptive and Non-Adaptive Demixing Transform

When the number of microphones is small and the demixing trans-
formations W i is non-adaptive and static, it cannot adequately
decorrelate multichannel inputs from every spatial combination of
acoustic sources. However, transformations W i adaptively esti-
mated by the observation provide better decorrelation than non-
adaptive estimates.

For instance, FDICA [9] is well known as an estimator for adap-
tive demixing transformation from observed multichannel signals.
FDICA aims for higher-order correlation among the demixed chan-
nels to decrease, which results in diagonalizing the transformed co-
variance of each source as well as the covariance of the whole output.
We thus focus on the demixing matrix obtained by FDICA, denoted
as W ICA,i, which is adaptively estimated using the input signals.
Comparative evaluation is conducted in the experimental evaluation
section below.

For now, let us introduce one of static linear demixing trans-
formations [7,8,10] for comparison. S. Lee et al. [7] applied a
beamspace transformation before the magnitude MNMF. The trans-
formation WBF,i aims for the inputs to be demixed based on dif-
ferences in individual source directions by preparing beamformers
pointing in different directions as follows:

WBF,i =
[
W h

BFproto,i(WBFproto,iW
h
BFproto,i)

−1/2
]h

, (10)
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where ·−1/2 is the combination of matrix square root and inversion,
and

WBFproto,i = [ai(θ1), · · ·ai(θn), · · · ,ai(θN )]h, (11)

where ai(θn) ∈ CM denotes the steering vector of the sound
of the n-th source arriving from direction θn. For example, the
m-th component of ai(θn) for a uniform linear array where the
microphone spacing is d can be represented under the assumption
of the plane wave propagation model as follows: {ai(θ)}m =
exp [−jωi(m− 1)d sin θ/c], where ωi is the angular frequency
corresponding to frequency-index i, c is the speed of sound, and
j =
√
−1. WBF,i is ensured to be subunitary, which means W h is

equal to the pseudo inverse of W , on account of the transformation
of WBFproto,i in eq. (10). The steering directions θn need to be
selected so that the source signals are separated from each other, for
example, at regular intervals.

The spatial filters in WBF,i have a broader spatial mainlobe,
and are thus less sensitive to the accuracy of the steering direction
with respect to the positions of the sources, but also have lower spa-
tial resolution, which prevents WBF,i from diagonalizing the spatial
covariances. In contrast, although the filters in W ICA,i need to be
adaptively estimated every time using observations because they are
sensitive to the source positions, they offer better diagonalization.

2.3. Source Image Reconstruction

A reconstruction of the source image signal ỹ(k)
est,ijn ∈ C in demixed

domain for the k-th source is given by Wiener filtering as follows

ỹ
(k)
est,ijn =

gink

∑L
l=1 t

(k)
il v

(k)
lj∑K

k=1 gink

∑L
l=1 t

(k)
il v

(k)
lj

ỹijn. (12)

As described in [7] for the beamspace domain, the estimated
demixed domain source image can be back-transformed to an obser-
vation domain source image by using the inverse of the demixing
matrix

x̃
(k)
est,ij = W−1

i ỹ
(k)
est,ij (13)

where
x̃

(k)
est,ij = [x̃

(k)
est,ij1, · · · , x̃

(k)
est,ijM ]t (14)

and
ỹ
(k)
est,ij = [ỹ

(k)
est,ij1, · · · , ỹ

(k)
est,ijN ]t. (15)

The back-transformation is valuable in the general case because it
reconstructs the observation domain source image in an accurate way
by gathering the spread parts among the multiple demixed signals.
In practical applications, the estimated source images in demixed
domain will also be useful (e.g., for enhanced speech) if the demixed
signals are already enhanced to some extent.

On the other hand, the back-transformation sometimes causes
divergence of the estimated signals. Divergence is prevented since
the demixing matrix WBF,i [7] in 2.2 is subunitary. In the case of
the demixing by FDICA W ICA,i, we experimentally confirmed that
the divergence does not occur, shereas a general demixing matrix
may cause divergence.

2.4. Multiplicative Update Rule Based on Auxiliary Function

A multiplicative update rule for the DMNMF decomposition eq. (8)
and eq. (9) can be easily derived using auxiliary function strategies as
seen in [11] for typical NMF with more general β-divergence. The

derived update rule for our formulation of IS-divergence DMNMF
using the auxiliary function based approach is given by

gink ← gink

√√√√∑
j yijnŷ

−2
ijn

∑
l t

(k)
il v

(k)
lj∑

j ŷ
−1
ijn

∑
l t

(k)
il v

(k)
lj

, (16)

t
(k)
il ← t

(k)
il

√√√√∑
j v

(k)
lj

∑
n yijnŷ

−2
ijngink∑

j v
(k)
lj

∑
n ŷ−1

ijngink

, (17)

v
(k)
lj ← v

(k)
lj

√√√√∑
i t

(k)
il

∑
n yijnŷ

−2
ijngink∑

i t
(k)
il

∑
n ŷ−1

ijngink

. (18)

Seki at el. [12] already introduced a mathematically equivalent up-
date rule for the magnitude MNMF. The updates eq. (16), eq. (17)
and eq. (18) need to be repeated in order to adequately decrease the
objective function score eq. (9). During the iterative updates, the ob-
jective function score is guaranteed to decrease monotonically and
thus converge finally.

We use the multiplicative updates eq. (16), eq. (17), and eq. (18)
in the following experiments, instead of the other multiplicative
update rule proposed by Ozerov and Févotte for the magnitude
MNMF [1]. In their method, there is no guarantee of reaching a
(locally) optimal solution.

2.5. Semi-Supervised Training of Bases

To improve the separation performance in speech enhancement
tasks, semi-supervised decomposition using pre-trained spectral
bases is applied to DMNMF in the experiment in Section 3.

Supervised or semi-supervised decomposition of NMF has been
proposed for audio source separation given all or part of the spec-
tral [13] or spatial [6] bases. In our case, pre-trained speech bases are
applied to t

(1)
il in eq. (8) and are fixed during the update iterations.

We reconstruct the estimated speech signals using the components
for k = 1.

3. EXPERIMENTAL EVALUATION

To evaluate the proposed method, we conducted multichannel
speech enhancement tests using a dataset taken from the 2010 sig-
nal separation evaluation campaign (SiSEC2010) [14,15] “Source
separation in the presence of real-world background noise” task
development, 1 (speech) source dataset.

This dataset consists of 10 speech signals of 10 s uttered from
fixed positions in a file recorded in 5 noisy conditions (2 files per
1 condition) by a uniform linear array of omnidirectional micro-
phones with a spacing of 8.6 cm. The background noise signals
were recorded in real-world noise environments: cafeteria (Ca), pub-
lic square (Sq), and subway car (Su). The noise signal was recorded
each at two different positions: center (Ce) and corner (Co) (except
for (Su), only at (Ce)). The differences of the magnitude between
the microphones of the speech source images are small because the
sources are enough far from the array or are simulated under the as-
sumption of spherical wave propagation. More detailed descriptions
can be found in [14].

We compare DMNMF with demixing by FDICA (referred to
as DMNMF (FDICA)) to the conventional method of DMNMF by
beamspace transformation (DMNMF (BF)), both of which are pre-
sented in Section 2.2. FDICA is performed by independent vector
analysis (IVA) based on auxiliary function techniques [16] which
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(a) 2-channel input
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(b) 4-channel input

Fig. 1: SDR improvement in one speech source image estimation in noisy background.

(a) Clean (b) Unprocessed (c) FDICA

(d) Mag. MNMF (e) DMNMF (BF) (f) DMNMF (FDICA)

Fig. 2: (Un)processed samples for Ca Co A (2-ch): 3–6sec.
Table 1: Analysis parameters in the experiments

sampling frequency, bit size 16000 Hz, 16 bit
# of input channels M 2 or 4
FFT window size, window shift size 4096 (256 ms), 2048 (128 ms)
# of sources K 2
# of dimension size N equal to M
# of spectral bases L (for each source) 50
Steering directions (deg.) (BF) 0, 180 (2-ch)

0, 60, 120, 180 (4-ch)
# of update iteration (FDICA) 30
source priors of FDICA time varying Gaussian [19]
# of update iteration (DMNMF) 200

gives a stable estimate of the demixing matrix. The projection
back [17,18] to the first channel signals of the observations x̃ij1

is applied to the demixing matrices. This means that the demixed
signals by FDICA represent the source images for the first channel
signals of the observations. For both the DMNMF, Wiener filter-
ing and back-transformation are performed based on components
estimated by DMNMF, as discussed in Section 2.3. Speech spec-
tral bases of both the DMNMF for the semi-supervised updates,
discussed in Section 2.5, are trained using Japanese clean speech
of around 70 min in duration. The other analysis conditions are
shown in Table 1. For reference, they are also compared with the
beamspace transformations (BF), the FDICA, and the magnitude
MNMF (mag. MNMF) individually. The magnitude MNMF is also
performed in the semi-supervised way and using the same speech
spectral bases for a fair comparison.

The evaluation criteria we used is the signal-to-distortion ratio

(SDR), defined in BSS EVAL [20], of the speech source images of
the first microphone of the array. In our tests, the SDR represents
the overall distortions of the estimated speech considering the source
image to spatial distortion ratio (ISR), the source-to-interference ra-
tio (SIR) and the source-to-artifacts ratio (SAR). In the evaluations,
the highest SDR among the multiple estimated outputs for a signal
is chosen for each task.

The speech enhancement results are presented in Fig. 1. The
SDR improvements denote the relevant SDR minus the SDR of un-
processed signals. The scores for the magnitude MNMF and the
DMNMFs are the averages of 20 tests per file with the initial param-
eters changed randomly each time.

In both the 2-channel and 4-channel cases, DMNMF with
FDICA offers the best average SDR improvements (6.4 dB (2-ch)
and 6.8 dB (4-ch)) compared with DMNMF with BF (3.6 dB (2-ch)
and 4.9 dB (4-ch)) or magnitude MNMF (3.2 dB (2-ch) and 3.1 dB
(4-ch)). Comparing DMNMF with FDICA to FDICA alone, we can
say that DMNMF dramatically improves FDICA output in terms of
SDR improvement from 1.8 to 6.4 dB (2-ch) and from 1.3 dB to 6.8
dB (4-ch). At the same time, the SIR and SAR of DMNMF with
FDICA are consistently better than the conventional methods.

The individual SDRs of DMNMF with FDICA are also better
than unprocessed signals except for Ca Ce A (2-ch) and Ca Co A
(4-ch). For these, most of the speech components seem to be kept
well and noise components are reduced, but some of the speech
components are dropped, which causes reduction of the SDR. Mis-
matches between the fixed speech spectral bases and the speech
spectra in the signals is expected to occur because we found that
updating the speech bases mitigates the degradation. Fig. 2 shows
(un)processed spectrograms for Ca Co A. DMNMF with FDICA
well enhances the speech while the magnitude MNMF or DMNMF
with beamspace transform loses several components of the speech
harmonics.

4. CONCLUSIONS
We investigated blind source separation of audio signals by DM-
NMF, which is MNMF of magnitude spectrograms in a linear
demixed domain. The original magnitude MNMF by itself is less
effective in general acoustic situation because it discards mutual
information between the input channels, which is represented in
non-diagonal complex elements of spatial covariance matrices. This
paper shows that general linear transformation (linear demixing)
can be applied as preprocessing for the magnitude MNMF, and
FDICA is a representative example of better preprocessing than the
conventional transformation in experimental comparison in a 2- or
4-channel speech enhancement task.
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