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ABSTRACT

We propose a sound field decomposition method that takes into
consideration spatio-temporal sparsity. It has been proved that sparse
representation of a sound field is effective in reducing errors originat-
ing from spatial aliasing artifacts compared with conventional plane
wave decomposition. In most current methods of sparse sound field
decomposition, the spatial sparsity of the sound source distribution
is only assumed. However, it is known that the temporal structure of
the source signal to be decomposed can also be sparse in the time-
frequency domain. We formulate an objective function for sparse
sound field decomposition by using the ¢, ,-norm to simultaneously
induce sparsity in the space and time domains. An optimization al-
gorithm on the auxiliary function method is derived to solve it. Nu-
merical simulations of acoustic holography indicate that the recon-
struction accuracy can be improved by controlling the parameter of
temporal sparsity. We also demonstrate that a statistical measure of
the source signals can be used as an indicator to determine a nearly
optimal parameter.

Index Terms— Sound field decomposition, sparse signal repre-
sentation, spatio-temporal sparsity, auxiliary function method

1. INTRODUCTION

Various applications of acoustic signal processing, such as sound
field analysis, visualization, and reproduction, are founded on sound
field decomposition. The objective of sound field decomposition is
to represent a sound field as a linear combination of fundamental so-
lutions of the Helmholtz equation using signals received by multiple
microphones. This representation makes it possible to estimate the
entire sound field from pressure measurements; therefore, it can be
used for various applications including the acoustic inverse problem.

Plane-wave decomposition has been commonly used for sound
field decomposition because of its computational efficiency. This
method corresponds to spatial Fourier analysis of the sound field [1].
Acoustic holography is used to estimate the pressure or velocity dis-
tribution in the inverse direction of sound propagation. The method
based on spatial Fourier analysis is referred to as near-field acous-
tic holography (NAH) [1-3]. Sound field recording and reproduc-
tion have also been achieved with this representation [4-6], which
is applied to high-fidelity audio systems. Even though these meth-
ods make it possible for efficient and stable signal processing to be
carried out using the fast Fourier transform (FFT), a critical issue
arises from artifacts originating from spatial aliasing. This artifacts
cause significant deterioration of the decomposition accuracy above
the spatial Nyquist frequency, which depends on the interelement
spacing in the microphone array. For example, in sound field record-
ing and reproduction, listeners are unable to localize the reproduced
sound images and the frequency characteristics of the reproduced
sound are adversely affected.
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In recent years, the sparse representation of a sound field has
been proved to be effective in reducing spatial aliasing artifacts [7,8].
Sparse sound field decomposition is generally based on the assump-
tion that a distribution of sound sources is spatially sparse. NAH
based on a sparse representation enables sound field imaging with
high resolution even at high frequencies [7]. The use of sparse
sound field decomposition for recording and reproduction makes it
possible to reproduce the sound field above the spatial Nyquist fre-
quency [8-10].

As discussed above, most current methods of sparse sound field
decomposition are only based on the spatial sparsity of the sound
sources. However, it is known that sparsity also appears in the
temporal structure of source signals to be decomposed in the time-
frequency domain, which is typically used in blind source separation
problems [11,12]. We propose a sound field decomposition method
that takes into consideration the sparsity in the space and time do-
mains. We derive an objective function incorporating the ¢, 4-norm
(0 < p < g < 2) of a matrix of the source signals as a penalty
term [13, 14]. The auxiliary function method [15-17] is applied
to obtain an optimization algorithm. Obviously, the sparsity in the
time domain is less strong than that in the space domain; therefore,
we also discuss a method of adjusting a parameter to control the
temporal sparsity using prior information on statistical measure of
the source signals. Numerical simulations are conducted to evaluate
the proposed method for the acoustic holography problem.

There have been few previous works on sparse sound field de-
composition using prior information on the temporal structure of
source signals. We previously proposed a sparse sound field de-
composition method incorporating a complex non-negative matrix
factorization (NMF) model [18]. This method assumed that a large
data set of source signals to be decomposed is available for training
because it is inherently necessary to train all the possible spectrum
structures of the source signals. For the multitask learning problem,
Rakotomamonjy et al. proposed an algorithm for ¢, ,-norm mini-
mization [14]; however, our proposed algorithm can treat a wider
range of the penalty parameter, which is discussed in Sec. 3.2.

2. SPARSE SOUND FIELD DECOMPOSITION

2.1. Generative model of sound field

First, we briefly revisit the generative model of a sound field pro-
posed in [8]. As shown in Fig. 1, the sound field is divided into in-
ternal and external regions of a closed surface. The internal region is
denoted as (2. We assume that the sound field consists of monopole-
source and plane-wave components and that the monopole compo-
nents exist only inside €2. The sound pressure distribution is obtained
by placing microphones on the receiving plane I'. By denoting the
position vector and frequency as r and w, respectively, the spatial
distribution of the monopole components inside €2 is represented as
Q(r,w) (r € Q). Therefore, the sound pressure at r, p(r,w), can be
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Fig. 1. Generative model of sound field

represented as the sum of inhomogeneous and homogeneous terms,
pi(r,w) and pi(r, w), respectively, as

p(I‘,UJ) = pi(rvw) +ph(rvw)
= Q' ,w)G(r|r',w)dr' + pn(r,w),

r'eQ

(¢Y)

where G(r|r’,w) is the three-dimensional free-field Green’s func-
tion that corresponds to the transfer function of the monopole
sources:

exp(—j¢|r — r'll2)
drfr—rl2 -

G(r|r',w) = )
Here, c is the velocity of sound. Hereafter, the temporal frequency w
is omitted for notational simplicity. The objective of the sound field
decomposition is to decompose the sound field into Q(r) and pn(r)
as in (1), by using the pressure measurements p(r) (r € ).

2.2. Sound field decomposition based on spatial sparsity of
source distribution

By discretizing €2, (1) can be treated as the sparse representation
problem. First, the region €2 is discretized as a set of grid points and
their number is denoted as N. M microphones are assumed to be
arranged on I'. We assume N > M since the grid points should
entirely and densely cover the region 2. Then, the discrete form of
(1) can be represented as

y =Dx + 1z, 3)
where y € CM comprises the signals received by the microphones,
x € CV is the distribution of the monopole components at the grid
points, z € CM is the homogeneous term of the received signals,
i.e., the plane-wave components, and D & CM*N s the dictio-
nary matrix of the monopole components whose elements consist of
the Green’s function (2) between the grid points and microphones.
Therefore, the sound field decomposition problem becomes the es-
timation of x and z when y and D are given. We assume that Dx
is the dominant component of y and z is the residual. Although the
linear equation (3) is an underdetermined problem, a small number
of elements in x will have nonzero values because the number of
monopole components inside €2 should be sufficiently smaller than
the number of grid points. Therefore, the sound field decomposition
can be achieved by obtaining a sparse solution of (3).

Although (3) deals with a model in a single time frame and a
single frequency bin, several group-sparse models based on physical
properties can be introduced for more accurate and robust decom-
position [9]. We here assume that the observations of multiple time
frames are available and that the source locations are static during the
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observations, which is typically referred to as the multiple measure-
ment vector (MMV) problem or simultaneous sparse approximation
problem [8, 13, 19-21]. By denoting the signals at each time frame
t @t € {1,---,T}) as yi, x4, and z;, the matrices Y € CM*7T,
X € CV*T and Z € CM*T whose columns respectively consist
of y, x¢, and z; can be defined. Then, the signal model (3) can be
represented in matrix form as

Y =DX +Z. @

Under the assumption of static source locations, each column of X
has nonzero values at the same positions; therefore, X can be as-
sumed to be sparse in terms of its rows. The row-sparse solution
of X can be obtained by solving the following optimization prob-
lem [13]:
1

minimize {5 |Y — DX||% + )\J(X)} , o)
where J(X) is a penalty term for inducing the row-sparsity of X
and ) is a parameter that balances the approximation error and the
penalty term. Generally, J(X) is defined as follows:

p/2
JX)=>" <Z |n,¢ 2) ,

n

Q)

where x, ¢ is the (n, t)th element of X. In our previous studies [8,9],
an algorithm called M-FOCUSS [19] or its extension [9] was applied
to achieve sparse sound field decomposition based on (4).

3. SPATIO-TEMPORAL SPARSE SOUND FIELD
DECOMPOSITION

In (5), sparsity is only imposed on the spatial source distribution;
however, the temporal structure is not assumed to be sparse. By
using the #, 2-norm penalty term (6), each activated row, i.e., the
time sequence of the source signal, is estimated in a least-square-
error sense. However, it is known that many acoustic source sig-
nals are sparse in their time sequences in the time-frequency domain,
and this fact is typically exploited in blind source separation prob-
lems [11,12]. Therefore, by taking into consideration the spatio-
temporal sparsity of X in the sound field decomposition, it will be
possible to increase the decomposition accuracy. Indeed, the tem-
poral structure, i.e., the rows of X, is less sparse than the spatial
structure, i.e., the columns of X. Therefore, it will be useful if the
column-sparsity of X can be controlled to obtain an estimate of X.

We previously proposed a sound field decomposition method us-
ing time-frequency spectrum patterns trained in advance [18], which
was derived by incorporating the complex NMF model [16] into the
monopole components. This method is useful when a large data
set of source signals is available in advance because all the possi-
ble spectrum patterns are necessary for training in principle; how-
ever, this will be difficult to achieve in some situations. Therefore, a
method using approximate information on the temporal structure of
the source signals is required rather than detailed spectrum patterns
trained in advance.

3.1. Sound field decomposition based on ¢, ;-norm minimiza-
tion

To achieve spatio-temporal sparse sound field decomposition, we
consider the following ¢, ,-norm minimization problem:

mingnize {% Y — DXH?: + AJp,q(X)} ) Q)



Algorithm 1 Proposed spatio-temporal sparse sound field decompo-
sition algorithm

Initialize X(®, 1 =0
while loop # 0 do

&=,z

t

l l
iy = |z, a

fort =1to T do
Wi diag(p‘m(ﬁi”)l/z_p/zq(nif,)t)l“’”)
A" « DW
-1
X WAL (ALAP 1)y,
end for
l+<1+1
if stopping condition is satisfied then
loop =0
end if
end while

where

r/q
Jpqe(X) = Z <Z|$nt| > : ®)

Here, p and q (p, ¢ > 0) denote parameters used to control the spar-
sity in the space and time domains, i.e., in the columns and rows,
respectively. When ¢ = 2, the penalty term (8) corresponds to that
for the MMV problem (6). By setting ¢ < 2, this penalty term in-
duces sparsity in the rows of X as well as in the columns. Then,
a spatio-temporal sparse solution of X can be obtained by solving
(7). The spatial sparsity can be assumed to be very strong because it
corresponds to the spatial distribution of the monopole components.
Therefore, a smaller p will be preferable as long as a local minimum
due to non-convexity is avoidable. On the other hand, the tempo-
ral sparsity will not be so strong compared with the spatial sparsity.
Therefore, it will be useful to adjust g according to prior information
on the sparsity of the source signal to be decomposed. A method for
choosing q is discussed in Sec. 4.

3.2. Optimization algorithm based on auxiliary function method

We derive an optimization algorithm based on the auxiliary
function method [15-17] that gives stable and fast update rules.
First, we develop an auxiliary function of the objective function.
The penalty term in (7) is concave with respect to >, |zn,¢|? for
0 < p/q < 1. Since a concave function lies below its tangent line,
the following inequality can be obtained:

Jp,q(X) =

5 <Z mn1t|q>p/q

n t

=2 5”“1(2%,4‘? ) +elh O

where &, > 0 is an auxiliary variable that corresponds to the tangent
point. The equality holds for &, = >, |zn,¢|?. Next, for ¢ < 2, (9)
can be bounded as follows by using a quadratic function whose axis

443

is on the line z,,; = O:

> gﬁz/“ (Z |@ne|* = £n> e
n t

<2t (S Gt + (1- )k
+ &
= J; (X, ©), (10)

where 7,,; > 0 is an auxiliary variable and the equality holds for
Mnt = |ZTn,t]. We hereafter denote the set of auxiliary variables,
i.e., {&} and {nn}, as ©. Therefore, the auxiliary function for the
objective function in (7) can be obtained as

SIY = DX|2 + 077, (X, ©). (11
On the basis of the principle of the auxiliary function method, the
objective function in (7) monotonically decreases upon iteratively
minimizing (11) with respect to X and ©. In addition, this algo-
rithm corresponds to M-FOCUSS upon setting ¢ = 2. The proposed
algorithm for spatio-temporal sparse sound field decomposition is
summarized in Algorithm 1.

In the context of the multitask learning problem, Rakotoma-
monjy et al. applied an algorithm for ¢, ;-norm minimization [13,
14]. This algorithm is a type of iteratively reweighted least-squares
algorithm; therefore, it is similar to the proposed algorithm. In this
algorithm, however, no direct solutions are given for (7); instead, the
relaxation problem of (7) is employed by raising (8) to the power of
2/p. As a result, Rakotomamonjy’s algorithm is derived for ¢ > 1
because the relaxation problem is equivalent to the original problem
only when the penalty term is convex, i.e., p,g > 1. On the other
hand, our proposed algorithm can be applied for 0 < p < g < 2,
even when ¢ < 1, owing to the direct formulation of the relaxation
problem using the auxiliary function method.

4. EXPERIMENT
Numerical simulations were conducted to evaluate the proposed
method for the acoustic holography problem under the free-field
assumption. In Cartesian coordinates, omni directional microphones
were linearly aligned along the z-axis with its center at the ori-
gin. The number of microphones was 32 and the interval between
them was 0.12 m. The region €2 was set as a rectangular region
of 4.0x3.0 m? on the z-y plane centered at (0.0, —1.5, 0.0) m.
This region was discretized into grid points with intervals of 0.1 m
along both the z- and y-axes. A single point source was located at
(<7.4x107%, =7.2x 1071, 0.0) m. The source signal was a single-
frequency sinusoidal wave but its complex amplitude was extracted
from speech. First, the short-time Fourier transform (STFT) was
performed to obtain time-frequency spectrograms of the speech sig-
nals. The sampling frequency of the speech signals was 16 kHz
and a square-root Hanning window of 32 ms length with a 16 ms
overlap was used in the STFT. Since the duration of the speech
signal ranged from 2.7 to 7.7 s, the number of time frames was
between 167 and 480. Next, we chose the frequency bin between
1.8 and 2.2 kHz with the highest power, then its amplitude sequence
was applied to the simulated source signal of a sinusoidal wave at
2.0 kHz. The speech signals were extracted from a Japanese speech
database (RWCP-SP99) [22], and included three female (Speakers F
#1-3) and three male (Speakers M #1-3) utterances. The number of
utterances per speaker was 10; therefore, we used 60 speech signals



in total. Gaussian noise was added to the signals received by the
microphones so that the signal-to-noise ratio was 20 dB.

We evaluated the efficacy of adjusting the parameter for control-
ling the temporal sparsity ¢ in the estimation of the pressure distribu-
tion on the line y = —0.1 m, which was defined as the reconstruction
line. The length of the reconstruction line was 4.0 m and its center
was at (0, =0.10) m. By discretizing the reconstruction line, 401
evaluation points at intervals of 0.01 m were obtained. For quan-
titative evaluation, we define the signal-to-distortion ratio (SDR) as

S [Porse (1,
S or Porse (i) — Pear 0O

SDR = 10log (12)

where Pirue (4, t) and Pegs (4, t) are the true pressure and the pressure
estimated using the decomposition result in the time-frequency do-
main, respectively. Here, ¢ and ¢ respectively denote the indexes of
the evaluation points and time frames.

p was here fixed at 1.0 and ¢ was changed from 1.0 to 2.0 at
intervals of 0.05. Note that the proposed algorithm corresponds to
M-FOCUSS for ¢ = 2, which is the method used in [8]. The bal-
ancing parameter A\ was chosen by using the golden section search
method [23] so that the highest SDR was obtained at each ¢. Fig-
ure 2 shows the relationship between ¢ and the SDR for three types
of utterance of four speakers (12 utterances in total). Each line style
and color represents a speaker and utterance, respectively. The result
when the source signal was generated by the Gaussian distribution
is also shown (Gaussian). In all the results for the speech signal,
including the utterances and speakers not shown in Fig. 2, the high-
est SDR was achieved at ¢ < 2. On the other hand, ¢ = 2 gave
the best results for the signals generated by the Gaussian distribu-
tion. The maximum improvement in the SDR of the speech signal
was 0.13 dB and the corresponding value of ¢ was 1.6 (the blue line
of Speaker M #1 in Fig. 2). Therefore, controlling the parameter of
the temporal sparsity q is effective for increasing the reconstruction
accuracy when the source signal to be decomposed is speech.

Although it is not a trivial task to optimize g in practice, it will
be useful if rough information such as a statistical measure of the
source signal can be used as an indicator to choose a nearly opti-
mal g. It is difficult to derive an analytical relationship between ¢
and a statistical measure; therefore, we experimentally investigated
the relationship between the optimal ¢ and the kurtosis of the speech
signal, which is a statistical measure of super-Gaussianity of data.
Figure 3 is a plot of the inverse of the kurtosis obtained from the am-
plitude of the speech and the parameter ¢ giving the highest SDR.
‘We obtained the kurtosis from a sequence of absolute values of the
source signal. All the results for utterances and speakers are shown
and each symbol indicates a speaker. Since it is possible to generate
artificial time sequences with various kurtoses by using the gamma
distribution, the results for source signals generated by the gamma
distribution are also shown (Gamma). By setting the shape parame-
ter of the gamma distribution, we obtained time sequences that have
kurtosis from 10 to 120 at intervals of 10. Note that the shape pa-
rameter k corresponds to a kurtosis of 6/k [24]. The length of the
artificial signals was 200 frames and three time sequences were gen-
erated at each kurtosis. One can observe an approximately linear
relationship between the inverse of the kurtosis of the source sig-
nal and the optimal q. When the inverse of the kurtosis was large,
i.e., the super-Gaussianity was weak, the optimal ¢ became large. In
contrast, when the inverse of the kurtosis was small, i.e., the super-
Gaussianity was strong, the optimal ¢ became small. This result
suggests that the kurtosis of the source signal to be decomposed can
be used as an indicator to determine a nearly optimal g.
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5. CONCLUSION

A sound field decomposition method that takes into consideration
spatio-temporal sparsity was proposed. The spatial sparsity of the
sound source distribution has only been considered in sparse sound
field decomposition methods even though it is known that sparsity
also appears in the temporal structure of source signals to be decom-
posed in the time-frequency domain. We formulated an objective
function for sparse sound field decomposition by using the ¢, 4-norm
to simultaneously induce sparsity in the space and time domains.
The proposed algorithm was based on the auxiliary function method.
In numerical simulations of acoustic holography, the reconstruction
accuracy was improved when g was set at a smaller value than 2,
which means that it is effective to control the parameter of the tem-
poral sparsity. In addition, we demonstrated that the inverse of the
kurtosis of the source signal can be used as an indicator to determine
a nearly optimal ¢q. A future work will be to develop a method for
sound field decomposition based on sparsity in the time-frequency
and space domains.
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