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ABSTRACT 
 
Moving target detection and tracking in reverberation 
environment is an important yet challenging problem in 
many applications such as speech, sonar, radar and seismic 
signal processing. Extending the early work of online 
subspace and sparse filtering [1], this paper presents an 
approach based on structured convex optimization. 
Exploiting potentially coherent structure of reverberation 
background, we represent the beamspace image data as the 
sum of a low-rank and a sparse matrix, where reverberation 
assumes low-rank structure and moving target signal is 
modeled as sparse. Detection and tracking is then 
formulated as a structured convex optimization problem, 
and solved via an accelerated proximal gradient (APG) 
algorithm. The performance of proposed algorithm is 
demonstrated using experimental results. 
 

Index Terms— target detection and tracking, 
reverberation, low-rank, sparse, structured convex 
optimization, accelerated proximal gradient,  
 

1. INTRODUCTION 
 
Target detection and tracking is important in a number of 
applications such as computer vision, speech, sonar, radar 
and seismic signal processing. However, it remains a 
challenging task especially in environments where severe 
reverberations or background clutters are mixed with highly 
dynamic target signals. For instance, in speech or active 
sonar applications, signal quality may be degraded by strong 
reverberations associated with reflection or diffraction of 
transmitted signals from boundaries or propagation medium. 
Reverberation can in addition become strongly correlated 
with the transmitted signals, overlap or even overwhelm 
target signal of interest at the receivers, thus rendering 
correlation-based approaches such as matched filtering or 
adaptive filtering [9] less effective. Although increasing 
array size may lower the power of the interfering 
reverberations within reduced resolution cell, it has the 
adverse effect of causing reverberations within the cell 
significantly more heavy-tailed than Rayleigh distribution at 
the matched filter envelope, potentially leads to an increased 

false positive rate. Subspace based techniques [2]–[7] can be 
effectively used to capture reverberation components in the 
data by assuming and exploiting its potentially coherent 
structure. This is achieved through the assumption that 
coherent reverberation components are of reduced-
dimension and hence can be extracted from the data via 
orthonormal decomposition techniques such as singular 
value decomposition. Measurement data are decomposed 
into a signal and a noise subspace which need to be updated 
from received data in slowly time-varying cases. For 
instance, principal component inverse [13] and Dominant 
mode rejection (DMR) [14] both operate in a reduced-
dimension space spanned by the eigenvectors of the cross-
spectral density matrix (CSDM) associated with its largest 
eigenvalues. These algorithms essentially attempt to 
separate target signal from reverberation according to 
assumed orthogonality that is relatively stable over the time 
duration of interest. However, for data with a complex 
dynamic structure this signal and noise subspace 
decomposition is not always an adequate representation. For 
instance, in moving target tracking, the low-rank subspace 
could be dominated by structured background reverberation 
that may also be slowly time-varying. The rapidly moving 
target signal, of real interest in this case, does not fit cleanly 
into either subspace to be filtered accurately. Its estimate is 
often degraded by noise and reverberation interference.  

Recently a joint online subspace and sparse filtering 
algorithm was proposed in [1], which alternate between 
tracking a low-rank subspace representation of reverberation 
background and estimating the instantaneously sparse 
components associated with moving targets, and recursively 
update both as new data arrives. The algorithm consists of a 
random projection based subspace updating scheme and a 
soft-thresholding based sparse estimation. The reported 
results show significantly improved tracking performance 
over traditional subspace tracking algorithms. 

In this paper, we extend the work in [1] to develop a 
structured convex optimization formulation of the problem 
of moving target detection and tracking, and propose to 
solve it using an accelerated proximal gradient (APG) 
algorithm. We use an example data set consisting of moving 
targets embedded in severe background reverberations, 
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obtained in the form of a sequence of two-dimensional 
range-bearing beamspace snapshots sampled over a certain 
period of observation time. A global matrix is constructed 
out of all the data by stacking together each data frame after 
column vectorization. We then represent the global data 
matrix as the sum of a low-rank and sparse matrices. The 
moving targets, covering a small set of data points in each 
snapshot, is represented by the sparse matrix that may 
change the support regions over time. The background 
reverberations, assumed stable and correlated over the 
considered sequence, contribute to the low-rank matrix. As a 
result, the problem of moving target detection and tracking 
in reverberation environments is casted as one of recovering 
the sparse matrix, time-tracking its variations over columns 
after being separated from the low-rank component, which 
we propose to solve iteratively via the APG algorithm.  

The rest of this paper is organized as follows. Section II 
presents the problem formulation. The APG algorithm for 
low-rank and sparse matrix decomposition is described in 
Section III. Section IV present experimental data processing 
and results. Finally, conclusions and discussions are 
provided in Section V. 
 

2. PROBLEM FORMULATION  
 
We start by considering a sequence of 2D data frames, 
denoted as 𝑍" ∈ ℝ%&	  ×	  %), for 𝑖 = 1, …𝑁. Each represents 
the snapshot image in the range-bearing domain obtained at 
the ith sampling time. 𝑁0 and 𝑁1  are the dimensions in the 
range and bearing directions, respectively. After vectorizing 
each frame, i.e. by column stacking and converting each 𝑍" 
into a vector 𝑧" of length 𝑁0𝑁1 , we collect them all as 
columns of a global data matrix 𝒁 ∈ ℝ4	  ×	  %, where 𝑀 =
𝑁0𝑁1 , and 𝑁, the number of columns, is equal to the 
number of time snapshots: 
 
  𝒁 = [𝑧7	  𝑧8 …	  𝑧%]	  .   (1) 
 
In the context of moving target detection and tracking under 
reverberation conditions, the data sequence in 𝒁 can be 
realistically modeled as the sum of target signals of interest, 
background reverberations or clutters, and noises. As 
mentioned in the introduction, we make the assumption 
throughout the paper that during the time span of the 
considered data sequence, the background reverberations are 
strongly correlated and slowly time-varying from frame to 
frame, while the target signals have sparse support in each 
snapshot frame and can change rapidly over frames. As a 
result, a suitable decomposition of the data matrix	  𝒁 that 
reflects this type of structure is the following 
 
  𝒁 = 𝑳 + 𝑺 + 𝑮	  ,    (2) 
 
where 𝑳, 𝑺 and 𝑮	  are the low-rank background 
reverberation, the sparse target signal and the noise 
components of the data, respectively. In the absence of 𝑺, 

recovering 𝑳 at a given rank r from 𝒁 involves the familiar 
low-rank matrix approximation problem, i.e.: 
 
  min 𝒁 − 𝑳 B,   (3) 
  such that rank(𝑳) = 𝑟, 
 
which can be solved via singular value decomposition 
according to the Eckart-Young Theorem [8]. Here B 
denotes the matrix Frobenius norm. 

Based on the data representation specified in (2), the 
problem of detecting and tracking moving target signal 
involves extracting the sparse matrix 𝑺 from the data matrix 
𝒁, and then tracking the signal variations across the columns 
of 𝑺. To recover the matrices 𝑳 and 𝑺 from 𝒁, we adopt the 
following relaxed optimization formulation ([1],[31], [27]-
[28]) 
 min

𝑳,𝑺

7
8
𝒁 − 𝑳 − 𝑺 B

8 + 𝜂 𝑳 ∗ + 𝜂𝛼 𝑺 7, (4) 
 

where	  𝛼 and 𝜂 are positive scalars as the weighting 
coefficients for the two structure penalty terms, i.e. low-rank 
and sparsity. ∗ and 7 denote the matrix nuclear 
norm and  the matrix 𝑙7norm, as the convex surrogates for 
matrix rank and 𝑙Inorm, respectively. Given a matrix 𝑨 with 
element entries 𝑎",L and singular values 𝜆", 
  𝑨 ∗ ≜ 𝜆""    (5) 
  𝑨 7 ≜ 𝑎"L"L    (6) 
  𝑨 I ≜ 𝐼(𝑎"L)"L ,  (7) 
where 𝐼 𝑎"L = 0 if 𝑎"L = 0 and 1 otherwise. 
The decomposition in (2) is generally not unique. Recovery 
guarantee conditions, mostly for noiseless cases, involve the 
so-called rank-sparsity incoherence [10], or in terms of the 
matrix row/column support and the coordinate alignment of 
its low-rank singular vectors [11], which is beyond the 
scope of this paper. 

 
3. STRUCTURED CONVEX OPTIMIZATION VIA 

THE APG ALGORITHM 
 

The optimization framework (4) for low-rank and sparse 
matrix decomposition has been part of an intensive research 
field in recent years, with many applications such as 
machine learning, computer vision, and compressive sensing 
[31]-[33]. In the current application context of moving 
target detection and tracking, we may view low-rank and 
sparse matrix decomposition as an extension of subspace-
based processing, capable of coping with more complex 
data structure that does not necessarily conform to a pure 
low-rank structure. A large number of algorithms have been 
developed for the same or similar purposes ([19]-[30]), with 
theoretical aspects such as recovery guarantee, convergence 
and complexity discussed in [32][33]. A review of some of 
these algorithms can be found, for instance, in [31]. In this 
paper we choose the accelerated proximal gradient (APG) 
algorithm to solve the nonlinear convex problem (4). In the 
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context of proximal mapping [34], a general form for 
problems such as (4) can be written as follows: 

 min
𝑿
𝐹 𝑿 ≜ 𝑓 𝑿 + 𝑐(𝑿),  (8) 

where 𝑓 𝑿  denotes a convex objective term that has an 
inexpensive proximal operator [34][35] and 𝑐 𝑿  is 
differentiable and associated with constraints. Specifically, 
in the case of (4), we have 

 𝑓 𝑿 = 	  𝜂 𝑳 ∗ + 𝜂𝛼 𝑺 7   (9a) 

 𝑐 𝑿 = 	   7
8
𝒁 − 𝑳 − 𝑺 B

8     (9b) 

with  𝑿 ≜ (𝑳, 𝑺). Since 𝑐 𝑿  is quadratic hence smooth and 
convex, we have the following Lipschitz condition [34] 

 ∇𝑐 𝑿 − ∇𝑐 𝒀 B ≤ 𝐿Z 𝑿 − 𝒀 B, (10) 

with the Lipschitz constant 𝐿Z = 2 in this case. ∇𝑐 𝑿  here 
denotes the Fréchet derivative of	  𝑐 𝑿 .  

The proximal gradient algorithms ([22][34]) consists of 
the following minimization at each iteration 

𝑿\]7 = 𝑝𝑟𝑜𝑥abc(𝒀\ − 𝜆\∇𝑐 𝒀\ ) 

= argmin
𝑿

𝑓 𝑿 + 7
8𝜆𝑘

𝑿 − 𝒀\ − 𝜆𝑘∇𝑐 𝒀\ 8
8
 (11) 

= argmin
𝑿

𝑓 𝑿 + 𝑐 𝒀\ + ∇𝑐 𝒀\ , 𝑿 − 𝒀\ +
1
2𝜆\

𝑿 − 𝒀\ 8
8 

where 𝑝𝑟𝑜𝑥abc denotes the proximal mapping of a convex 
function 𝜆\𝑓  [34], and 𝜆\ ∈ (0, 1/𝐿Z]is the step size. 𝒀\ 
is updated from 𝑿\, the estimate at the previous iteration, 
and is equal to 𝑿\ in the basic version of the proximal 
gradient algorithm. In the accelerated proximal gradient 
(APG) algorithm [34][35][38],  

 𝒀\ = 𝑿\ +
ibjkl7
ib

(𝑿\ − 𝑿\l7)  (13) 

which is one step extrapolation based on 𝑿\ and 𝑿\l7.  The 
extrapolation parameter is determined by the sequence 𝑡\ 
which is required to satisfy 𝑡\8 − 𝑡\ ≤ 𝑡\l78 . Often it suffices 
to take the equality hence 𝑡\ = 1 + 4𝑡\l78 + 1 2. 

Let 𝑮\ ≜ 𝒀\ − 𝜆𝑘∇𝑐 𝒀\ , we have  

𝑿\]7 = argmin
𝑿

𝑓 𝑿 + 1
2ab

𝑿 − 𝑮𝑘 2
2.   (14) 

Furthermore, denote 𝑮\ ≜ (𝑮\o , 𝑮\p), where 𝑮\o  and 𝑮\p 
correspond to the low-rank and sparse components in 𝑮\, 
respectively, similarly with 𝒀\ ≜ (𝒀\o , 𝒀\p),. As a result, 𝑮\o  
and 𝑮\p  can be iteratively update as follows, 

𝑮\o = 𝒀\o − 𝜆𝑘 𝒀\o + 𝒀\p − 𝒁 ,    (15a) 

𝑮\q = 𝒀\p − 𝜆𝑘 𝒀\o + 𝒀\p − 𝒁 .    (15b)  

Given the particular form of 𝑓 𝑿  in (9a), the proximal 
mapping in (11) involves two relatively simple soft-
thresholding operations for estimating the sparse component 
𝑺\]7 and the low-rank component 𝑳\]7, as explained below.  

The sparse component estimate 𝑺\]7 in 𝑿\]7 can thus be 
obtained via direct soft-thresholding 𝑮\p: 

𝑺\]7 = 𝑆𝑇tuab 𝑮𝑘
𝑆 =

𝑮𝑘
𝑆 − 𝜂𝛼𝜆\,	  if	  𝑮𝑘𝑆 > 𝜂𝛼𝜆\

𝑮𝑘
𝑆 + 𝜂𝛼𝜆\,	  if	  𝑮𝑘𝑆 < −𝜂𝛼𝜆\

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	  
 (16) 

where 𝑆𝑇tuab() denotes the soft-thresholding operator for 
the elements of 𝑮\p. The low-rank component estimate 𝑳\]7 
in 𝑿\]7 involves soft-thresholding the singular values of 𝑮\o . 
Let the singular value decomposition(SVD) of 𝑮\o =
𝑼𝑘𝚺\𝑽𝑘𝑇, then 

 𝑳\]7 = 𝑼\𝑆𝑇tab 𝚺𝑘 𝑽\�   (17) 

where  𝑆𝑇tab() denotes the soft-thresholding operator for 
the singular values 𝚺\. The SVD in (17) needed at each 
iteration can be computationally costly especially when the 
matrix size is large. This may be replaced by partial SVD. 
Or in applications like the one we have, the data matrix 𝒁 ∈
ℝ4	  ×	  %,  with  𝑀 = 𝑁0𝑁1 ≫ 𝑁, then an eigenvalue 
decomposition of the 𝑁×𝑁 correlation matrix becomes a 
significantly more efficient alternative, and the soft 
thresholding only needs to be applied the square root of the 
first 𝑁 eigenvalues. The resulting APG algorithm is 
summarized in Table 1. 

Table 1. APG algorithm for target detection and tracking 

Inputs: global data matrix 𝒁 specified in (1) 
Outputs: estimates of 𝑳, 𝑺  as in (2) 
Parameters: weights 𝛼, 𝜂, 𝜆\, 𝑡\, 𝜀, maxiter,  
Initialization: 𝑳7 = 𝑳I = 𝑺7 = 𝑺I = 𝟎 
For 𝑘 = 1:maxiter  and  𝒁 − 𝑳\ + 𝑺\ B

8
< 	  𝜀 

𝒀\o = 𝑳\ +
𝑡\l7 − 1

𝑡\
(𝑳\ − 𝑳\l7) 

𝒀\p = 𝑺\ +
𝑡\l7 − 1

𝑡\
(𝑺\ − 𝑺\l7) 

compute 𝑮\o , 𝑮\p  according to (15) 
𝑽\, 𝚲\ = 𝒆𝒊𝒈 𝑮\o

�
𝑮\o , 𝑎𝑛𝑑	  𝚺\ = 𝚲\ 7/8 

𝑼\ = 	  𝚺\l𝟏𝑮\o𝑽\ 
compute 𝑺\]7 and 𝑳\]7from (16) and (17), 
respectively 
update 𝑡\ = 1 + 4𝑡\l78 + 1 2 

End 
Where 𝜆\can be obtained via line search within (0, 1/𝐿Z] 𝜀 
is the tolerate level for the reconstruction error at 
convergence. The choices of how to choose the values for 𝛼 
and 𝜂 can be found in [31], for instance, 𝛼 =
1 max	  (𝑀, 𝑁). 

 
4. EXPERIMENTAL RESULTS 

We formulated and tested the APG algorithms described 
in sections 2 and 3 for moving target detection and tracking 
on an acoustic field data sets. The data set was chosen for its 
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strong reverberation that appears fairly coherent across 
observed time duration, and the fact that the target signal 
has relatively sparse support in each time snapshot. The data 
set consisted of 60 frames of 2D range-bearing data 
generated from an array imaging algorithm. Each frame is a 
matrix of dimension 793×90, with 793 samples along the range 
axis and 90 samples the radial angle axis. One such data frame is 
plotted in Figure. 1(a). As shown the moving target signal 
(circled in white) is overwhelmed by the background 
reverberation associated with acoustic backscattering, both 
in terms of magnitude and support area. Across the 60 
frames, the background reverberation remains relatively 
stationary with random scintillation while the target follows 
a nearly linear motion trajectory. 

 
Figure 1. Acoustic moving targets detection and tracking. (a) an 
example data frame (𝒛𝒊); (b) estimated reverberation (𝒍𝒊), (c) move 
target signals (𝒔𝒊)) (circled in white), and (d) the target tracking results.  

A global data matrix	  𝒁 of size 71370×60 is assembled 
from the 60 data frames according to (1). We then apply the 
APG algorithm to extract the reverberation and target signal 
as the low-rank component 𝑳 and the sparse component 𝑺, 
respectively. The parameter values used were 𝛼 = 0.013, 
𝜂 = 0.001 and maxiter=200. The matrices 𝒁, 𝑳, 𝑺, and 
residual 𝑮 are plotted in Figure 2, after truncating to exclude 
the noise-only areas for better visualization. The low-rank 
structure reflecting cross-frame reverberation coherence is 
evident in Figure 2(b). The rank and sparse structures are 
also illustrated in Figure 3. In Figure 3(a), the leading 30 
singular values of both 𝑳 and 𝒁 are plotted together. Figure 
3(b) plots 500 out of 71370 elements in 𝑺 that have the 
largest magnitude. These results confirm the degree of 
sparsity in the singular value domain (hence low-rank) and 
element domain (hence sparse), respectively.  

The estimated low-rank and sparse matrices, 𝑳, and 𝑺, can 
be dissembled with each of their columns converted back 
into one data frame, becoming the reverberation and the 
target signal at the corresponding data frame, respectively. 
For the data frame shown in Figure 1(a), the associated low-
rank and sparse components have been plotted in Figures 
1(b) and 1(c), respectively. The target tracking result is 

plotted in Figure 1(d). As pointed out in [1], in traditional 
subspace tracking, the background reverberation residual 
adds up constructively over tracking integral time, and 
overwhelms the target signal.  
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Figure 2. Low-rank and spare matrix decomposition; (a) the global 
data matrix 𝒁; (b) the low-rank component 𝑳; (c) the sparse matrix 𝑺, 
and (d) the residual noise matrix 𝑮, respectively. Noise only portions 
have been excluded for better visualization. 

 

Fig. 3(a) singular values of 𝑳, 𝒁.            Fig 3(b) Cardinality of 𝑺 
 

5. CONCLUSION 

In this paper, we formulate the problem of moving 
target detection and tracking in reverberation environments 
as a structured convex optimization problem for low-rank 
and sparse matrix decomposition, as an extension to early 
work in [1]. An accelerated proximal gradient (APG) 
algorithm has been applied to recover the low-rank and 
sparse components of the data, corresponding to coherent 
background reverberation and the moving target signal. 
Acoustic field data results have demonstrated the 
effectiveness of the approach.  
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