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ABSTRACT

The harmonic chirp signal model has only very recently been in-
troduced for modelling approximately periodic signals with a time-
varying fundamental frequency. A number of estimators for the pa-
rameters of this model have already been proposed, but they are ei-
ther inaccurate, non-robust to noise, or very computationally inten-
sive. In this paper, we propose a fast algorithm for the harmonic
chirp summation method which has been demonstrated in the liter-
ature to be accurate and robust to noise. The proposed algorithm is
orders of magnitudes faster than previous algorithms which is also
demonstrated via timing studies.

Index Terms— Harmonic chirp model, harmonic chirp summa-
tion, fast algorithm

1. INTRODUCTION

Many real-world signals are approximately periodic on a short time-
scale. These signals are encountered in many applications such as
music processing [1, 2], speech processing [3, 4], sonar [5], order
analysis [6], and electrocardiography [7]. Since the underlying pa-
rameters of most real-world signals are time-varying, the periodic as-
sumption is no longer accurate when the signal is viewed on a larger
time-scale. An example of this is illustrated in Fig. 1 where the spec-
trogram of an accelerating car engine is shown. When viewed on a
short time scale, the frequency components in the signal are approx-
imately constant, but the spectrogram clearly reveals that they are
increasing. Thus, we get a more accurate model of the signal by re-
placing the constant frequency components in the harmonic model
with time-varying ones. The harmonic chirp model (HCM) is such
a generalisation of the harmonic model where the frequency compo-
nents are modelled as varying linearly in time, and we here discuss
how the harmonic chirp summation (HCS) method can be imple-
mented efficiently for the estimation of the intercept, i.e., the funda-
mental frequency, and the slope, i.e., the fundamental chirp rate, of
such linearly varying frequency components.

The HCM has only very recently been used in [8] as an alter-
native to modelling non-stationary speech using amplitude modula-
tion models [9]. The HCM was also used in the context of speech
processing in [10, 11], but was considered in a more general frame-
work in [12, 13] in which animal sound signals were analysed. In
all of these papers, the complex-valued HCM was used although we
know of no application where such signals naturally occur. Since the
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Fig. 1. A spectrogram of an accelerating car engine. The recording
is downloaded from http://tinyurl.com/prosigorder.

HCM model has only been used for a couple of years, only a few es-
timators of the fundamental frequency and chirp rate have been pro-
posed, and efficient algorithms for them have not received much at-
tention. Unfortunately, the estimation of the fundamental frequency
and chirp rate involves solving a multi-modal 2D optimisation prob-
lem which is computationally expensive. Recently in [13], four dif-
ferent estimators were considered, and the results showed that a non-
linear least squares (NLS) estimator and the HCS method (called the
harmochirp-gram in [13]) had the best estimation accuracy and ro-
bustness to noise, but were also the most costly to compute. On the
other hand, the authors proposed an estimator called harmonic-SEES
which is much faster, but breaks down in noisy conditions for both
parameter estimation and model order selection. In [8, 11], the HCS
method was implemented in an iterative fashion to keep the compu-
tational complexity low, but this approach breaks down if the chirp
rate is too high relative to the segment length.

The HCS method is an approximate NLS estimator and, there-
fore, inherits many of its desirable properties such as noise robust-
ness and asymptotic efficiency. Contrary to the NLS estimator, how-
ever, the HCS method does not work well for low fundamental fre-
quencies (measured in cycles/segment), but this decrease in time-
frequency resolution is the price to pay to avoid the matrix inversion
in the NLS estimator. We think that the HCS method is a very good
trade-off between estimation accuracy and computational complex-
ity, and in this paper we focus on reducing the time complexity of the
HCS method. Compared to the HCS algorithm in [13], we reduce
the complexity by several orders of magnitudes. This gain is ob-
tained by 1) computing a part of the HCS objective with an FFT, 2)
exploiting the feasible region of the parameter space, 3) making the
algorithm recursive over the model order, and 4) selecting the start
index of the time series so that the HCS objective can be evaluated
on the coarsest possible grid. Moreover, this start index is shown to
lower the Cramér-Rao Lower Bound (CRLB) for any unbiased esti-
mator of the fundamental frequency by up to a factor of 16 compared
to the standard start index n0 = 0 which was used in [13].
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2. THE HARMONIC CHIRP MODEL

The real-valued harmonic chirp model (HCM) for a data set
{x(n)}n0+N−1

n=n0
is the real part of the complex-valued HCM in-

troduced in [8] and given by

x(n) =

l∑
i=1

Ai cos(θi(n)) + e(n) (1)

where n0 is a start index, Ai ≥ 0 is an amplitude, l ∈ {1, · · · , L}
is the model order, e(n) ∈ R is additive noise, and θi(n) ∈ [0, 2π)
is the instantaneous phase. In the HCM, this phase is modelled with
a second order polynomial as

θi(n) = φi + iω0n+ iβ0n
2/2 (2)

where φi, ω0, and β0 are the phase at n = 0, the fundamental
frequency, and the fundamental chirp rate, respectively. The signal
model in (1) can be rewritten into a vector form given by

x = Zl(ω0, β0)αl + e (3)

with the following definitions

x =
[
x(n0) · · · x(n0 +N − 1)

]T (4)

e =
[
e(n0) · · · e(n0 +N − 1)

]T (5)

Zl(ω, β) =
[
Cl(ω, β) Sl(ω, β)

]
(6)

Cl(ω, β) =
[
c(ω, β) · · · c(lω, lβ)

]
(7)

Sl(ω, β) =
[
s(ω, β) · · · s(lω, lβ)

]
(8)

c(ω, β) =
[
cos(ωn0 + 1

2
βn2

0) · · · (9)

cos(ω(n0 +N − 1) + 1
2
β(n0 +N − 1)2)

]T
s(ω, β) =

[
sin(ωn0 + 1

2
βn2

0) · · · (10)

sin(ω(n0 +N − 1) + 1
2
β(n0 +N − 1)2)

]T
αl =

[
a1 · · · al −b1 · · · −bl

]T (11)

where ai = Ai cos(φi), and bi = Ai sin(φi). We assume that the
signal has been Nyquist sampled so that the instantaneous frequency
ωi(n) = θ′i(n) = i(ω0 + β0n) satisfies

0 < ωi(n) < π , for i ∈ {1, 2, . . . , l} . (12)

If this constraint is satisfied by ωl(n), then it is also satisfied for all
lower model orders, so we here focus on ωl(n). As we argue in
Sec. 3, the best choice of the start index is n0 = −(N − 1)/2. For
this start index, the feasible region Ql for the fundamental frequency
ω0 and chirp rate β0 can be found by inserting the minimum and
maximum values of ωl(n) into (12). Thus,

Ql =
{

(ω0, β0) | 0 < ω0 − |β0|(N − 1)/2

∧ ω0 + |β0|(N − 1)/2 < π/l
}
. (13)

Often, the feasible region is not only determined by Nyquist sam-
pling, but also by prior knowledge on the parameters. Here, we as-
sume that such prior knowledge is represented by upper and lower
bounds (ω0, ω0, β

0
, and β0) on the fundamental frequency and chirp

rate. Thus, the total feasible region is the intersection between Ql
and these bounds, i.e.,

Pl =
{

(ω0, β0) ∈ Ql |ω0 ≤ ω0 ≤ ω0 ∧ β
0
≤ β0 ≤ β0

}
. (14)

The feasible sets for a number of different model orders are illus-
trated in Fig. 2.
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Fig. 2. Example of the feasible set for model orders l = 1, 2, 3.

2.1. Harmonic Chirp Summation

As shown in [8, 13], the nonlinear least squares (NLS) estimator of
the fundamental frequency and chirp rate for a given l is

(ω̂0, β̂0) = argmax
(ω0,β0)∈Pl

Cl(ω0, β0) (15)

where the NLS objective is given by

Cl(ω0, β0) = xTZl(ω0, β0)

×
[
ZTl (ω0, β0)Zl(ω0, β0)

]−1

ZTl (ω0, β0)x . (16)

As alluded to in the introduction, the NLS objective has a very os-
cillatory behaviour, but the maximiser can be found reliably using
a grid search over Pl as in [13]. However, this is very costly since
we must invert a 2l × 2l matrix for all points on the grid (or solve
a linear system of the same size) and for all candidate model orders
l ∈ {1, . . . , L}. In the harmonic chirp summation (HCS) method,
this inversion is avoided by replacing the matrix with its asymptotic
expression (in N ). Specifically, we have from the results in [14] that

lim
N→∞

2N−1ZTl (ω0, β0)Zl(ω0, β0) = I2l (17)

where I2l is the 2l×2l identity matrix. Using this as an approxima-
tion for a finite N , we obtain the approximate NLS objective

Jl(ω0, β0) = xTZl(ω0, β0)ZTl (ω0, β0)x (18)

which is the objective of the HCS method. The cost of making the
approximation based on (17) is that the HCS method breaks down
when the fundamental frequency is low [13]. Low here refers to the
number of periods in a segment of data. Thus, we can get a better
time-frequency resolution by using the NLS estimator since we can
work with shorter segment of data before the estimator breaks down.

2.1.1. Efficient implementation

A closer inspection of (18) reveals that it can be rewritten as

Jl(ω0, β0) =
l∑
i=1

∣∣∣fH(iω0) (g∗(iβ0)� x)
∣∣∣2 =

l∑
i=1

J1(iω0, iβ0)

where � denotes element-wise multiplication and

f(ω) =
[
1 exp(jω1) · · · exp(jω(N − 1))

]T (19)

g(β) =
[
exp(jβn2

0) · · · exp(jβ(n0 +N − 1)2)
]T

. (20)

Thus, for each candidate β0, we can efficiently compute the objec-
tive on a uniform grid using an FFT algorithm. Moreover, the ob-
jective J1(iω0, iβ0) evaluated on a uniform grid covering Q1 acts
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as a mother objective for the objectives of higher model orders since
each of these can be computed by recursively summing the appropri-
ate elements of J1(ω0, β0). Finally, Jl(ω0,−β0) = Jl(−ω0, β0) so
if we use a symmetric rate grid around 0, we basically get one half
of the objective evaluations for free since the FFT algorithm already
computes the objective for negative candidate fundamental frequen-
cies. In total, the time complexity is O(KF logF ) for calculating
J1(ω0, β0) and O(

∑L
i=2(K/i)(F/i)) = O(KF ) for calculating

{J1(ω0, β0)}Li=2 where K and F are the number of candidate fun-
damental chirp rates for l = 1 and the number of FFT grid points,
respectively. Thus, the total time complexity of our proposed al-
gorithm for the HCS method is dominated by O(KF logF ) which
means that, in terms of the order of time complexity, we get the ob-
jectives {Jl(ω0, β0)}Ll=2 for free. In Sec. 4, we establish howK and
F depend on N and L.

3. THE START INDEX, THE HESSIAN, AND THE CRLB

Traditionally, the start index n0 is set to either 0 or 1 without much
thought. This was also the case in [13]. In many applications, how-
ever, even a non-integer choice for this index can be made since
the important information lies in the distance between the sampling
times, not an arbitrary starting time. This was also noted in [15]
where it was shown that selecting the start index as n0 = −(N −
1)/2 minimised the CRLB of the phase of a chirp signal (i.e., the
HCM with l = 1). This indexing was also adopted in [8, 11], but
the consequences of this choice for the general HCM with l > 1
were not analysed, and we, therefore, do this here. Specifically, we
show (asymptotically) that a start index of n0 = −(N − 1)/2 1)
diagonalises the Hessian of Jl(ω0, β0), and 2) minimises the CRLB
of any unbiased estimator of the fundamental frequency.

3.1. The Hessian

Unfortunately, the derivation of the Hessian is lengthy, so we skip it
here, but if we make use of the asymptotic result in (17) and assume
that the SNR is high so that x ≈ Z(ω0, β0)α, it can be shown that

H l(ξ̂) =
∂2

∂ξ∂ξT
Jl(ξ)

∣∣∣
ξ=ξ̂
≈ −

N2(N2 − 1)
∑l
i=1A

2
i i

2

24

×
[

1 n0 + N−1
2

n0 + N−1
2

N2−4
60

+
(
n0 + N−1

2

)2] . (21)

where ξ =
[
ω0 β0

]T . Clearly, setting n0 = −(N − 1)/2 makes
the Hessian diagonal, and this can make simple iterative procedures
for refining a coarse grid-based estimate converge much faster to the
maximum. In Fig. 3, an example of the objective for n0 = −(N −
1)/2 is shown. For comparison, an example for n0 = 0 can be found
in [13]. Another advantage of having a diagonal Hessian is that the
grid size can be designed for the fundamental frequency and chirp
rate independently. We discuss this more thoroughly in Sec. 4.

3.2. The CRLB

The asymptotic CRLB for the parameter vector ηl =
[
αTl ω0 β0

]T
can be derived under the same approximations as made in the deriva-
tion of the Hessian. Assuming that the noise is white and Gaussian
with variance σ2, we obtain the Fisher information matrix (FIM) in
(22) on the top of page 4 where n =

[
n0 · · · n0 +N − 1

]T
and l =

[
1 · · · l

]T . As we are here only interested in the bound
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Fig. 3. Example of an objective function for N = 50, l = 5, n0 =
−(N −1)/2, and no noise. The red dot indicates the maximum, and
the red rectangle shows a scaled grid cell.

on the fundamental frequency and chirp rate, we only focus on the
lower 2× 2 matrix of the asymptotic inverse FIM which is given by

I−1
l (ω0, β0) =

24σ2

N(N2 − 1)(N2 − 4)
∑l
i=1A

2
i i

2

×
[
(N2 − 4) + 60

(
n0 + N−1

2

)2 −60
(
n0 + N−1

2

)
−60

(
n0 + N−1

2

)
60

]
. (23)

The CRLB for β0 does not depend on the start index, but the CRLB
for ω0 does and is minimised by n0 = −(N − 1)/2. In fact, the
ratio between the CRLB for ω0 for n0 = 0 and n0 = −(N − 1)/2
approaches 16 for N → ∞. Thus, we get a much more accurate
estimate of the fundamental frequency for n0 = −(N − 1)/2.

4. GRID SIZE SELECTION

As we have alluded to earlier, we recommend that the maximiser
of the HCS objective in (18) is found by evaluating the objective
over a coarse grid followed by a refinement procedure such as the
Nelder-Mead method [16]. This ensures that the number of required
objective evaluations is low. In [13], the authors did not use a re-
finement step and recommended that the number of grid points was
based on the CRLB. Specifically, they suggested that F = O(N3/2)

and K = O(N5/2) grid points were used for the fundamental fre-
quency and chirp rate, respectively. By following the procedure sug-
gested in [17] instead, we show here how a much lower value can be
selected by combining a coarse grid search with a refinement step.

Suppose that we set the grid sizes in ∆ξ =
[
∆ω0 ∆β0

]T so
that the objective has decreased by a factor of g > 1 when we move
±∆ξ away from the maximiser ξ̂. That is,

Jl(ξ̂ ±∆ξ) = Jl(ξ̂)/g . (24)

Unfortunately, this equation cannot be solved for ∆ξ. However,
we can obtain a approximate solution by replacing Jl(ξ̂ ± ∆ξ) by
its second order Taylor approximation around ξ̂. Since Jl(ξ̂) ≈
(N2/4)

∑l
i=1A

2
i and the Hessian in (21) is diagonal for n0 =

−(N − 1)/2, we obtain that

∆ω0 ≈

√
2

1− g
g

Jl(ξ̂)

[H l(ξ̂)]11
>

√
12
g − 1

g

1

NL
(25)

∆β0 ≈

√
2

1− g
g

Jl(ξ̂)

[H l(ξ̂)]22
>

√
12
g − 1

g

√
60

N2L
(26)

where the lower bounds are obtained by selecting the worst case
value of the amplitudes, i.e., Ai = 0 for i = 1, . . . , L − 1 and
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I(ηl) = σ
−2


N 0T 0 0

0 N
2 I2l − 1T n

2

[
l� b
l� a

]
−nT n

4

[
l� b
l� a

]
0 −nT 1

2

[
(l� b)T l� a)T

]
nT n

2

∑l
i=1 A

2
i i

2 (n�n)T n
4

∑l
i=1 A

2
i i

2

0 −nT n
4

[
(l� b)T (l� a)T

] nT (n�n)
4

∑l
i=1 A

2
i i

2 (n�n)T (n�n)
8

∑l
i=1 A

2
i i

2

 (22)
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Fig. 4. Estimation accuracy as a function of the SNR. Settings:
N = 250, l = L = 6, ω0 ∼ U(8π/N, 16π/N), β0 ∼
U(−3/N2, 3/N2), Ai = 1, i = 1, . . . , l, and φi ∼ U(0, 2π).

AL = A > 0. Note that we use the maximum candidate model
order L instead of the true order l since the latter is unknown. In the
evaluation section, we find a suitable value for g, but the above can
be used to find the relative size of the grid cell. In Fig. 3, an example
of such a grid cell is shown, and it clearly captures the shape of the
main peak of the objective.

From the grid sizes and Q1, we can now determine how the num-
ber of grid points F and K scale with N and L. Specifically,

F = 2π/∆ω0 = O(NL) (27)
K = 2π/((N − 1)∆β0) = O(NL) (28)

so that the time complexity for the algorithm in Sec. 2.1.1 is equal to
O(N2L2 logNL). This is significantly lower than the complexity
O(N5L2) of the algorithm for the HCS method proposed in [13]
(when the objective is evaluated for all candidate model orders),
and only slightly larger than the complexityO(N2L logNL) of the
Harmonic-SEES, also proposed in [13]. The Harmonic-SEES, how-
ever, breaks down in noisy conditions.

5. NUMERICAL EVALUATIONS

Due to the limited space and that we here propose a fast algorithm of
an already known estimator, we neither evaluate the accuracy of the
estimator nor apply it to real world data. For such evaluations, we
refer the interested reader to [8, 11, 13]. Instead, we here only find a
suitable value for the grid cells and evaluate the computation times
of our algorithm for the HCS method. We compare the proposed
fast HCS algorithm to our own implementation of the NLS method
and a fine-grid version (as suggested in [13]) of our fast HCS algo-
rithm since it, unfortunately, has not been possible to get access to
the code in [13]1. To find a suitable grid size or, equivalently, value
of g for our proposed HCS algorithm, we ran a Monte Carlo simu-
lation consisting of 1000 runs at each SNR from -10 dB to 5 dB in
steps of 1 dB. In each run, all the model parameters except the ampli-
tudes were generated at random as described in the caption of Fig. 4.

1Our code will be available at http://tinyurl.com/jknvbn.
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Fig. 5. The computation times for computing the objectives on the
grid with F = 5NL and K = NL. Top: L = 6 Bottom: N = 256.
The dotted lines are the corresponding timing of the HCS (g = 1.15)
with the Nelder-Mead refinement step.

This figure shows the estimation accuracy of the NLS and the HCS
methods for a grid size given by setting g = 1.15 as well as for the
HCS method for a grid size given by the CLRB at an SNR of 10 dB.
All grid estimates were refined using the NLS objective. We see no
major difference in estimation accuracy between the three methods
suggesting that using a combination of a coarse grid followed by a
refinement works as well as using a much finer grid with refinement.
The former approach, however, dramatically reduces the computa-
tion time as illustrated in Fig. 5 for various data length and model
orders2. The fine-grid version of our HCS algorithm is roughly 50
times slower than the version with the coarser grid. Since the only
difference between the two HCS algorithms is the coarseness of the
grid we are confident that our HCS algorithm is much more than a
factor of 50 times faster than the naïve HCS algorithm in [13].

6. CONCLUSION

In this paper, we have developed a fast algorithm for the harmonic
chirp summation method which has been demonstrated in the litera-
ture to be an accurate and robust estimator of the parameters in the
harmonic chirp model. The proposed estimator is orders of magni-
tudes faster than a recently suggested algorithm. The speed up was
obtained by using an FFT algorithm in the evaluation of the cost
function and by using a combination of a coarse grid search and a
local refinement instead of a fine grid search. Numerical evaluations
showed that using the former approach is as accurate as the latter,
but leads to a significantly lower computation time. We believe that
our fast algorithm for the HCS method now makes the method prac-
tically useful in a large number of applications.

2For orders 3 and 4, the HCS (10 dB) method is costly compared to higher
orders. This is due to MATLAB’s FFT implementation whose time complex-
ity can be quite high when the FFT size is prime or has large prime factors.
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