
AUTOMATIC CONVERSION OF POP MUSIC INTO CHIPTUNES FOR 8-BIT PIXEL ART

Shih-Yang Su1,2, Cheng-Kai Chiu1,2, Li Su1, Yi-Hsuan Yang1

1Research Center for Information Technology Innovation, Academia Sinica, Taiwan,
2Department of Computer Science, National Tsing Hua University, Taiwan

ABSTRACT
In this paper, we propose an audio mosaicing method that
converts Pop songs into a specific music style called “chip-
tune,” or “8-bit music.” The goal is to reproduce Pop songs
by using the sound of the chips on the old game consoles in
1980s/1990s. The proposed method goes through a procedure
that first analyzes the pitches of an incoming Pop song in the
frequency domain, and then synthesizes the song with tem-
plate waveforms in the time domain to make it sound like 8-bit
music. Because a Pop song is usually composed of the vocal
melody and the instrumental accompaniment, in the analysis
stage we use a singing voice separation algorithm to sepa-
rate the vocals from the instruments, and then apply differ-
ent pitch detection algorithms to transcribe the two separated
sources. We validate through a subjective listening test that
the proposed method creates much better 8-bit music than ex-
isting nonnegative matrix factorization based methods can do.
Moreover, we find that synthesis in the time domain is impor-
tant for this task.

Index Terms— Audio mosaicing, chiptune, synthesis

1. INTRODUCTION

Chiptune music, or the so-called 8-bit music, is an old style
music that were widely used in the 1980s/1990s game con-
soles, with the theme song of the classic game Super Mario
Bros. being one good example.1 The music consists of sim-
ple waveforms such as square wave, triangular wave and saw
wave. Although the game consoles in the old days have faded
away, the chiptune music style does not disappear [1, 2]. Ac-
tually, recent years have witnessed a revival of interests in old
pixel art [3, 4], both in the visual and audio domain.2 Chip-
tune style has begun to reclaim its fames in the entertainment
and game industry, and many people have been publishing
hand-crafted 8-bit version of Pop songs online.3

Being motivated by the above observations, we are inter-
ested in developing an automatic process that converts exist-

1Audio file online: https://en.wikipedia.org/wiki/File:
Super_Mario_Bros._theme.ogg (last accessed: 2016-12-23).

2For example, pixel art is used in SIGGRAPH 2017 as their visual design:
http://s2017.siggraph.org/ (last accessed: 2016-12-23).

3Audio files online: https://soundcloud.com/search?q=
8bit (last accessed: 2016-12-23).

ing Pop music to chiptunes by signal processing and machine
learning techniques. This task can be considered related to
an audio antiquing problem [5, 6], which aim to simulate
the degradation in audio signals like those in the old days,
and also, an instance of the so called audio mosaicing prob-
lem [7–12]. However, no attemps have been made to tackle
this task thus far, to the best of out knowledge.

In general, the goal of audio mosaicing is to transfer a
given audio signal (i.e. the target) with sound of another au-
dio signal (i.e. the source). An example is to convert a human
speaking voice into the barking sound of a dog. In this ex-
ample, the human sound is the target, while the sound of dog
is the source. Our task is also an audio mosaicing problem,
but in our case the aesthetic quality of the converted sound
is important. On the one hand, we require that the converted
song is composed of only the sounds of simple waveforms
that appear in the old game consoles. On the other hand, from
the converted song the main melody of the target song needs
to be recognizable, the converted song needs to sound like a
8-bit music, and it should be acoustically pleasing.

To meet these requirements, we propose a novel anal-
ysis/synthesis pipeline that combines state-of-the-art algo-
rithms developed in the music information retrieval (MIR)
community for this task. In the analysis stage, we firstly use
a singing voice separation algorithm to highlight the vocal
melody, and then use different pitch detection algorithms to
transcribe the vocal melody and the instrumental accompa-
niments. In the synthesis stage, we firstly perform a few
post-processing steps on the transcribed pitches to reduce the
complexity and unwanted fluctuations due to errors in pitch
estimation. We then use templates of simple waveforms to
synthesize an 8-bit music clip based on given the pitch esti-
mates. The whole pipeline is illustrated in Fig. 1 and details
of each step will be described in Section 2.

We validate the effectiveness of the proposed method over
a few existing general audio mosaicing methods through a
subjective listening test. The human subjects were given the
original version and the automatically generated 8-bit ver-
sions of a few Pop songs and were asked to rate the quality of
the 8-bit music using three criteria corresponding to pitch ac-
curacy, 8-bit resemblance, and overall quality. Experimental
result presented in Section 3 shows that automatic 8-bit music
conversion from Pop music is viable.
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Fig. 1. System diagram of the proposed method for 8-bit music conversion.

1.1. Related Work on Audio Mosaicing

Many methods have been proposed for audio mosaicing.
The feature-driven synthesis method [7–9] splits the source
sound into short segments, analyzes the feature descriptors of
the target sound such as temporal, chroma, mel-spectrogram
characteristics, and then concatenates those segments by
matching those feature descriptors. On the other hand, the
corpus-based concatenative synthesis method [10–12], se-
lects sound snippets from a database according to a target
specification given by example sounds, and then use the
concatenative approach [13, 14] to synthesize the new clip.

More recently, methods based on non-negative matrix
factorization (NMF) [15] become popular. NMF decom-
poses a non-negative matrix V ∈ Rm×n

≥0 into a template
matrix W ∈ Rm×k

≥0 and an activation matrix H ∈ Rk×n
≥0 ,

such that D(V|WH) is small, where D(·|·) is a distor-
tion measure such as the β-divergence [16] and ≥ 0 denotes
non-negativity. For audio, we can use the magnitude part
of the short-time Fourier transform (STFT), i.e. the spec-
trogram, as the input V; in this case, m, n and k denote
respectively the number of frequency bins, time frames, and
templates. Assuming that there is a one-to-one pitch cor-
respondence between the pre-built template matrices W(s)

and W(t) for the source and target sounds, given the spec-
trogram of a target clip V(t) we can compute the activation
by H(t) = argminHD(V(t)|W(t)H), and then obtain the
mosaicked version V̂(s) by V̂(s) = W(s)H(t). We can then
reconstruct the time-domain signal by inverse STFT, using
the phase counterpart of V(t).

The one-to-one pitch correspondence condition requires
that the two templates W(t) and W(s) are of the same size
and each column of them corresponds to the same pitch. This
condition is however hard to meet if the target is a Pop song,
for it involves sounds from vocals and multiple instruments.
To circumvent this issue, Driedger et al. [17] recently pro-
posed to use the source template W(s) directly to approxi-
mate the input to get H(t) = argminHD(V(t)|W(s)H), and
treat W(s)H(t) as the synthesis result. Because our target is
also Pop music, we consider this as a baseline NMF method in
our evaluation. For better result, Driedger et al. [17] further
extended this method by imposing a few constraints on the
learning process of NMF to reduce repeated or simultaneous

activation of notes and to enhance temporal smoothness. The
resulting “Let-it-bee” method can nicely convert Pop songs
into sounds of bees, whales, winds, racecars, etc [17].

Our experiments will show that neither NMF nor the more
advanced Let-it-bee method provides perceptually satisfac-
tory 8-bit conversion. This is mainly due to the specific aes-
thetic quality required for 8-bit music, which is less an issue
for atonal or noise-like targets such as bee sounds.

2. PROPOSED METHOD

This section presents the details of each component of the
proposed method, whose diagram is depicted in Fig. 1.

2.1. Singing Voice Separation

The vocal part and the instrumental part of a Pop song is usu-
ally mixed in the audio file available to us. As the singing
voice usually carries information about the melody of a song,
we propose to use singing voice separation (SVS) algorithms
to separate the two sources apart.4 This is achieved by an un-
supervised algorithm called the robust principle component
analysis (RPCA) [18, 19] in this paper. RPCA approximates
a matrix (i.e. the spectrogram) by the sum of a low-rank ma-
trix and a sparse one. In musical signals, the accompaniment
is polyphonic and usually repetitive, behaving like a low-rank
matrix in the time-frequency representation. In contrast, the
vocal melody is monophonic and changes over time, behaving
more like a sparse signal [20]. Therefore, by reconstructing
the time-domain signals of the low-rank and the sparse parts,
we can recover the two sources. Although there are many
other algorithms for SVS, we adopt RPCA for its simplicity
and well-demonstrated effectiveness in the literature [21]. If
the vocal part in musical signal is centered, we instead sub-
tract the left channel from the right one to cancel the vocal
part, and thus obtain a better accompaniment signal.

2.2. Pitch Analysis of the Accompaniments (Background)

As the instrumental accompaniment is polyphonic, we can
transcribe it by using any multi-pitch estimation (MPE) al-

4In the literature of auditory source separation, a ‘source’ refers to one of
the audio signals that compose the mixture. Hence, the term ‘source’ here
should not be confused with the term ‘source’ used in audio mosaicing.
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(a) NMF-based estimate (b) pYIN-based estimate

Fig. 2. The pitch estimation result for the singing voice.

gorithms. In this paper, we simply use the baseline NMF
method [17] for MPE. This is done by computing H(t) from
the separated instrument part of V(t) using the template of
chiptune notes W(s). As different columns of W(s) are built
to correspond to different pitches, the resulting H(t) provides
pitch estimates. The method is adopted for its simplicity, but
in our pilot study we found that false positives in the estimate
would make the synthesized sound too busy and sometimes
even noisy. To counter this, we impose a simple constraint on
H, assuming that the instrumental accompaniment can have
at most three active notes at any given time. Specifically, for
each time frame we consider only the top three pitch candi-
dates with the strongest activations, and discard all the others
by setting their activation to zero. In this way, we trade recall
rate for better precision rate by having fewer false positives.
As the main character in the 8-bit music should be the singing
melody, it seems to be fine to downplay the instrumental part
by presenting only at most three pitches at a time.

2.3. Pitch Analysis of the Singing Voice (Foreground)

The singing voice is usually monophonic (assuming only one
singer per song) and features continuous pitch changes such
as vibrato and glissando. As a result, NMF cannot perform
well for transcribing the singing voice, as shown in Fig. 2(a).
In light of this, we instead use a monophonic pitch detection
algorithm called pYIN [22] for the separated vocal part. As-
suming that any two detected pitches in consecutive frames
cannot differ from each other by more than one octave, we
postprocess the result of pYIN by moving the higher note in
such cases one octave down. As illustrated in Fig. 2, pYIN
can better capture the singing melody than NMF.

2.4. Activation Smoothing and NMF Constraint

We implement two additional post-processing steps for the
aesthetic quality of the conversion result. First, we apply a
median filter of width 9 frames to temporally smooth the re-
sult of pitch estimation for the vocal and instrumental parts
separately. Although this smoothing process may remove fre-
quency modulations such as vibratos in the singing voice, per-
ceptually it seems better to suppress the effect of vibratos in
the 8-bit music. Figure 3 illustrates the effect of smoothing.

Fig. 3. The spectrograms of a song after each major step.

Second, we hypothesize that the pitch estimate of the vo-
cal and instrumental parts might be related and it is possible
to use one of them to help the other. Therefore, we try to
use the pitch range determined by the pitch estimate of the in-
strumental part (i.e, the pitch range is set by the maximal and
minimal values of the detected pitches) to set constraint on the
pitch estimate of the vocal part. We refer to this as the ‘NMF
constraint’ and will test its effectiveness in our experiments.

2.5. Time-domain Synthesis

The final synthesis makes use of a pre-recorded collection
of simple narrow pulse waves and spike waves of different
pitches serving as the template chiptune tones. From the re-
sult of the preceding stages, we examine every note in any
given time frame to find consecutive time frames with the
same notes, which are then considered as note segments. If
a note segment contains only one frame, the segment will be
discard. Each note segment determines a set of pitches, their
amplitudes (i.e. energy), their common starting time and du-
ration. From this information, we concatenate the template
chiptune tones using overlap-and-add techniques directly in
the time-domain [13,14], with proper duration and amplitude
scaling of the chiptune tones. The major benefit of synthesis
in the time domain is to avoid the influence of phase errors for
we are not given phase information in the synthesis stage.

3. EXPERIMENT

To evaluate the performance of 8-bit music conversion, we in-
vited human subjects to take part in a subjective listening test.
This is deemed better than any objective evaluation for the
purpose of 8-bit music conversion is for the human listeners
to enjoy them. We are able to recruit 33 participants who are
acknowledgeable of how a usual 8-bit music (not necessarily
a 8-bit version of a Pop song but tunes that have been used in
video games) for the listening test. 23 participants are 18–24
years old, while the others are 24–40 years old. 30 of them
are male. The participants were asked to listen to four set of
clips. Each set contains a clip of Pop music (each 10–30 sec-
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Fig. 4. Result of subjective evaluation: the mean ratings on the six methods described in Section 3 in terms of (left) pitch
accuracy, (middle) 8-bit resemblance, and (right) overall quality. The error bars indicate the standard deviation of ratings.

onds in length), and 6 different 8-bit versions of the same clip
generated respectively by the following methods:

(m1) Baseline NMF for audio mosaicing of Pop songs [17].
(m2) SVS + baseline NMF: we apply NMF to the separated

vocals and instrumental background separately.
(m3) SVS + proposed pitch analysis (Sections 2.2–2.4) but

synthesize in the frequency domain using NMF.
(m4) SVS + Let-it-bee [17] for the two separated sources re-

spectively.
(m5) SVS + proposed pitch analysis (Sections 2.2–2.4) +

time-domain synthesis, excluding the NMF constraint.
(m6) SVS + proposed pitch analysis (Sections 2.2–2.4) +

time-domain synthesis.

In our implementation, we set the window size to 1 024 sam-
ples, hop size to 256 samples, and λ = 1 (a regularization pa-
rameter) for RPCA; window size to 2 048 samples, hop size
to 256 samples, and beta threshold to 0.15 for pYIN; window
size to 2 048 samples and hop size to 1 024 samples and the
KL divergence as the cost function for NMF.

The four audio clips employed in the listening test are:
Someone Like You by Adele All of Me by John Legend, Jar of
Hearts by Christina Perri, and a song entitled Gospel by Mu-
sicDelta from the MedleyDB dataset [23]. The main criteria
in selecting these songs are: 1) at most two accompanying in-
struments at any given time, 2) the main instrument is piano,
3) only one singer per song. We found in our pilot study that
RPCA can better separate the singing voice from the accom-
paniments for such songs.

After listening to the clips (presented in random order and
without names), the participants were asked to evaluate the 8-
bit versions in the following 3 aspects, from one (very poor)
to five (excellent) in a five-point Likert scale:

• Pitch accuracy: the perceived pitch accuracy of the
converted 8-bit music.

• 8-bit resemblance: the degree to which the converted
clip captures the characteristics of 8-bit music.

• Overall performance: whether the clip sounds good
or bad, from a pure listener point of view.

The mean ratings are depicted in Fig. 4 along with the er-
ror bars, where the following observations are made. First, in

terms of pitch accuracy, the performance of the six considered
methods is similar, with no significant difference according
to the Students t-test. The mean pitch accuracy appears to be
moderate, suggesting future work for further improvement.

Second, in terms of 8-bit resemblance, we see that the
proposed method (m6) and its variant (m5) perform signifi-
cantly better than the other four (p-value<0.05). The method
(m3) is a variant of the proposed method which performs the
final synthesis operation in the frequency domain instead of
the time domain. We see that this method still performs better
than the existing NMF or Let-it-bee methods, confirming the
adequacy of the use of SVS and the proposed pitch analysis
procedure for this task. However, the major performance gap
between (m3) and (m6) indicates that time-domain synthesis
is critical. Moreover, we see that while the proposed method
attains an average 8-bit resemblance near to 4 (good), baseline
NMF or Let-it-bee methods have average 8-bit resemblance
only about 2 (poor). We find that NMF-based methods can-
not perform well because the resulting conversion still sounds
like the original song. Moreover, as the result of (m5) and
(m6) are close, the NMF constraint seems not needed.

Finally, the result in overall performance seems to be cor-
related with 8-bit resemblance, but the average values are in
general lower, suggesting room for improvement.

Audio examples of the original clips and the converted
ones can be found in an accompanying website.5 We will
also release part of the source codes for reproducibility.

4. CONCLUSION

In this paper, we have proposed a novel task of converting
Pop music into 8-bit music and an analysis/synthesis pipeline
to achieve it, bringing together state-of-the-art singing voice
separation and pitch detection algorithms. A listening test
validates the advantages of the proposed method overall two
existing NMF-based audio mosaicing methods. As a first at-
tempt, we consider the result promising. From the feedbacks
of the participants, future work can be directed to improve the
onset clarity of the notes. It is also interesting to extend our
work to Pop music accompanied by other instruments.

5https://lemonatsu.github.io/
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