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ABSTRACT
We study the acquisition and analysis of sounds generated by
the knee during walking with particular focus on the effects
due to osteoarthritis. Reliable contact instant estimation is
essential for stride synchronous analysis. We present a dy-
namic programming based algorithm for automatic estima-
tion of both the initial contact instants (ICIs) and last contact
instants (LCIs) of the foot to the floor. The technique is de-
signed for acoustic signals sensed at the patella of the knee. It
uses the phase-slope function to generate a set of candidates
and then finds the most likely ones by minimizing a cost func-
tion that we define. ICIs are identified with an RMS error
of 13.0% for healthy and 14.6% for osteoarthritic knees and
LCIs with an RMS error of 16.0% and 17.0% respectively.

Index Terms— acoustic emission, dynamic program-
ming, knee osteoarthritis, contact instants

1. INTRODUCTION

Osteoarthritis (OA) is the most common and disabling of all
musculoskeletal diseases. It occurs most frequently in the
knee, affecting as many as 1 in 5 adults over the age of 45 [1].
Symptoms include pain, stiffness and swelling, greatly affect-
ing quality of life. OA is associated with increased mechani-
cal wear, such as through older age and high body weight [2].
No cure exists. Treatments aim to manage symptoms through
lifestyle modification, physio- and pharmacological- therapy
[1]. More severe cases require a total knee replacement.

Diagnosis of OA relies on a combination of patient re-
ported symptoms and medical imaging (X-ray, Magnetic Res-
onance Imaging (MRI), ultrasound) of cartilage and subchon-
dral bone degradation. However, sensitivity and accessibil-
ity (due to high cost and associated risks) of current imaging
methods in early disease is poor. They capture the knee stati-
cally or during passive motion and not during functional Open
Chain Activity (OCA) i.e. when the foot leaves and makes
contact with the ground. Thus at the time of diagnosis, OA
is already an end-stage disease, and understanding of its aeti-
ology and progression is still limited. New imaging methods
which are sensitive, inexpensive and risk-free are required for

the early detection of pre-clinical OA to facilitate effective
intervention toward disease management and prevention.

Using body sounds for diagnostic purposes is well docu-
mented. Sounds produced by the knee likely depend on the
angle of the bones, severity of degradation, lubrication and
wear of cartilage. Blodgett (1902) observed increased knee
sound with subject age [3] and Bircher (1913) reported dis-
tinctive sounds associated with type of knee meniscal injury
[4, 5]. Chu et al. [6–9] reported that, unlike clinically healthy
knees, the spectral activity (recorded during active motion)
of pathological knees spanned the entire audible frequency
range and signal acoustic power increased with severity of
cartilage damage. With the development of Vibroarthrog-
raphy (VAG), signal processing algorithms have been pro-
posed to extract relevant information from the non-stationary
VAG signals and classify them according to knee pathology
[10–13]. VAG relies on accelerometer sensors that are sen-
sitive below frequencies of 1 kHz to pick up mechanical vi-
brations generated by the movement of articular surfaces. Re-
cently, Mascaro et al. explored the use of Acoustic Emission
(AE) as a biomarker for assessing knee joints [14]. By de-
veloping a system consisting of electro-goniometers to track
joint angle and 2 piezoelectric contact sensors operating in
the ultrasonic domain to record AE signals, they used the
number of AE bursts to differentiate between healthy and OA
knees. In a follow up study by Shark et al. [15,16], by extract-
ing the peak magnitude value and the average signal level of
each AE burst and performing Principal Component Analy-
sis, they demonstrated that AE measures of healthy and OA
knees form separate clusters. They concluded that OA knees
produce substantially more AE events with higher peak mag-
nitude and average signal level values than healthy knees [17].

However, no work has yet explored knee AE acquired dur-
ing functional OCA such as walking, essential for understand-
ing OA development and progression. Therefore, this paper
aims to detect and segment the walking strides in an AE sig-
nal. This is fundamental for the acoustic analysis that will en-
able intermittent sounds to be discriminated from those that
occur in every stride (stride-synchronous analysis). Stride
synchronization would also enable inter-stride signal aver-
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aging to improve detection of quasi-periodic acoustic events
with poor SNR as well as the extraction of more targeted fea-
tures for classification. This paper presents a dynamic pro-
gramming (DP) algorithm for estimating both the ICIs and
the LCIs, the time instants enabling segmentation. Section 2
describes the data acquisition system and the testing protocol.
Section 3 presents the DP algorithm. Experiments and results
are given in section 4. Conclusions are drawn in Section 5.

2. DATA ACQUISITION

Adults with clinical knee OA (1986 ACR) and reporting no
previous knee pain (>2 weeks) were recruited from a Lon-
don orthopaedic clinic. Knees were classified as: 1) OA, 2)
healthy. Exclusion criteria were: aged <18 years, previous
surgery, unable to provide consent. AE were acquired (rate
44-48 kHz) using a contact microphone (Basik Pro, Schertler,
20 Hz to 20 kHz) attached over the patella, supported by a
digital preamplifier (RME Babyface; PreSonus DigiMax LT),
during walking on a specialised treadmill instrumented with
force plates. Force plates recorded kinetic and spatiotemporal
gait characteristics during stance phase (foot in contact with
ground), including ground reaction force at heel strike (ICI),
mid-stance and push-off (LCI) and stride length and width.

The assessment commenced with a 5 minute warm-up
then walking at 1) progressive speeds on a flat level (starting
at 4 km/h) 2) fixed speed up a progressive incline (4 km/h,
maximum incline 20%), 3) progressive speeds on a fixed de-
cline. The speeds and inclines were subject dependent. In the
evaluation database we have a number of recordings for each
knee. These correspond to different assessment stages.

3. ALGORITHM DESCRIPTION

The proposed algorithm operates in two stages. The first
part generates a set of candidate instances using the negative-
going zero crossings (NZC) of the energy weighted Group
Delay (GD) [18]. The second part employs DP to refine the
selection by minimising a cost function that we define.

3.1. Candidate Generation

Suppose that sample n of an AE signal s(n) can be predicted
from linear combinations of past samples weighted by some
predictor coefficients. We can use autocorrelation Linear Pre-
dictive Coding (LPC) to find these predictors and apply the
inverse filter formed by them to s(n) [19]. This yields the
Linear prediction (LP) residual u(r), an impulsive excitation
signal shown in Fig. 1(c). These impulsive events indicate
particular points in the gait cycle that are to some extent ‘un-
predictable’ from the previous samples. Their location can
be accurately estimated by GD. In our algorithm the energy
weighted formulation of the GD is used due to its higher per-
formance and lower computational cost compared to other

×104
0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Am
pl

.
(N

or
m

.)

-1

0

1
Patella signal

×104
0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Fo
rc

e
(N

)

0

500

1000
Force plate

×104
0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Am
pl

.
(N

or
m

.)

-0.2

0

0.2
LP residual

Time (ms) ×104
0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

-200
0

200

Energy-Weighted GD

Fig. 1. (a) Force plate signal with identified ICIs (dashed
lines) and LCIs (dotted lines) (b) OA knee patella recording
with candidates (crosses) and reference CIs (c) LP residual
with reference CIs (d) Energy-Weighted GD with reference
CIs. Ticks in (b) correspond to selections made by the DP

GD methods, [18], given by:

dEW (r) =

∑N−1
n=0 nx2

r(n)∑N−1
n=0 x2

r(n)
(1)

where xr(n) = w(n)u(n+r) is an N -sample windowed seg-
ment of u(r) beginning at sample r, for n = 0, 1, ...N − 1.
The choice of window size is a compromise as shown in [18].
If it spans the entire stride length then there would be a sin-
gle NZC per stride corresponding to the strongest excitation
event. In this case, inaccurate detection occurs since the high-
est peak in any stride, as represented in u(r), does not always
correspond to only the ICI or the LCI; it can be both, even in
the same patient. If it’s larger than one stride, more than one
event may be included resulting in an NZC at the wrong po-
sition. Identification of both ICIs and LCIs requires a smaller
window but when it is much smaller than the stride length it
is likely that some windows will contain no impulsive events,
giving rise to spurious NZC. An increased number of candi-
dates is not problematic however, since these spurious candi-
dates will not be selected by the algorithm if they are, as is
the intention, assigned a high cost. An analysis of a number
of window sizes and LPC orders is given in Section 4.

3.2. Dynamic Programming

Given the set of candidate contact instants (CIs), the next task
is to retain only those which, taken together, best fit the con-
straints of the system and our prior understanding of the struc-
ture of u(r). Each constraint is incorporated by assigning an
associated cost to each candidate. The set of CIs which jointly
minimise the total cost (2) is then solved using DP [20].

min
L

|L|∑
k=1

θslopeCslope(k) + θpdCpd(k) + θerCer(k) (2)
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where L is the subset selected by the DP, |L| is the number
of selections and k is the index of the selection in L. The
composing terms (described in the equations to follow) have
a range of values from 0 to 1. We use qk−1, qk and qk+1 de-
fined as the sample instances of the candidates k − 1, k and
k + 1 respectively which depend on L. Our DP algorithm
maintains two possible routes for qk at the same time and con-
siders all candidates to be ICIs for the first route and LCIs for
the second. The difference lies in the distribution from which
the Energy Ratio cost is derived, (9a) and (9b). At each step
two candidates are kept in memory for each route: (a) qk−1,
the previous candidate in path (primary path) and (b) the can-
didate between qk−1 and qk (secondary path), selected based
on the swing-to-stance cost (10). At the end of the process
the path with the smallest accumulated cost from both routes
is selected as the primary. Its elements are labeled as ICIs or
LCIs based only on their total Energy Ratio cost depending on
which is smallest. Given the label, the appropriate secondary
path is chosen.

1) Slope Deviation Cost: The slope in the vicinity of the
NZC in dEW for a clear impulse is -1 by definition. The
events in u(r) are not true impulses and hence the slope will
deviate from unity. However, we have found that candidates
corresponding to true CIs have a slope much closer to -1 than
others. This gives us a way of discriminating true events from
spurious NZC where the slope is nearly flat. We define

Cslope(k) = 1 +m(qk) (3)

m(qk) =
1

l

[
dEW (qk +

l

2
)− dEW (qk − l

2
)

]
(4)

where l is the length of window in samples centered on the
NZC. From our tests we have found 3 ms to be a satisfactory
choice for the window duration.

2) Period Deviation Cost: It is based on the assumption
of relatively constant stride period and is defined as:

Cpd(k) =

{
exp(− α

(ϵ−∆p)
) if ∆p < ϵ

0 if ∆p ≥ ϵ
(5)

∆p =
min[(qk − qk−1), (qk+1 − qk)]

max[(qk − qk−1), (qk+1 − qk)]
. (6)

The cost increases nonlinearly with period ratio (∆p) and pa-
rameter α controls the rate of increase of the cost: the smaller
the value the faster the increment. We have set α to 0.001.
The tolerance factor ϵ is defined as the variability in stride du-
ration during normal walking. Its value is determined from
the cumulative distribution function of the period ratio as cal-
culated based on the reference instants from the force plate
data of the database. It should be dependent on the choice of
the GD window size. In the evaluation we have set it to 0.995.

3) Energy Ratio Cost: Let the energy ratio between qk
and qk−1 CI candidate be

Rqk,qk−1
=

min[E(qk), E(qk−1)]

max[E(qk), E(qk−1)]
(7)
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Fig. 2. (a) Minimum cost per Nb (b) Detailed cost variations
of Nb = -5 ms for all orders and window sizes

with

E(qk) =

N
2 −1∑

n=−N
2

s2(n). (8)

We define the energy ratio cost as:

Cer,I(k) = 1− pI(f(Rqk,qk−1
)) (9a)

Cer,L(k) = 1− pL(f(Rqk,qk−1
)) (9b)

where pI and pL are the probability density of the energy ratio
of ICIs and LCIs respectively, trained using ground truth CIs
from the force plate signals, and N is the size in samples of
a window centered on the candidate. This cost effectively
means that we penalise candidates that do not have consistent
energies as they are likely not to be true CIs. In the evaluation
we found that N = 0.2fs gives good energy consistency.

4) Swing-to-Stance Cost: It is a function of qk and qk−1

and considers all candidates between the two as possible se-
lections for the secondary path. It is not part of the overall
cost function but is rather used to decide on the secondary
path based on the selections of the primary. It is defined as:

Cswst(k) = 1− pswst(swing/stance) (10)

where pswst is the probability density of the swing to stance
distribution trained using ground truth CIs. For ICI route,
swing is the sample difference between qk and a viable can-
didate and stance is the sample difference between the viable
candidate and qk−1 (reversely defined for the LCI route).

4. EXPERIMENTS AND RESULTS

A database of 74 patella recordings from 11 healthy (56
recordings) and 4 OA knees (18 recordings) was used to eval-
uate the algorithm against ground truth CIs obtained using a
threshold of 10N on the corresponding synchronised force
plate signals. An estimated ICI is assigned to the j-th stride
if it lies in the interval defined, for a reference ICI (γj), as
(γj−1 + γj)/2 ≤ n < (γj + γj+1)/2 for each element in
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Fig. 3. ICI and LCI timing errors for healthy knees

the set Γ = [γ1, γ2, ..., γM ] with j = 2, 3...M -1. Similarly,
an estimated LCI is assigned to the j-th stride if it lies in the
interval defined from the corresponding set of reference LCIs.

The algorithm’s performance is assed based on four met-
rics: 1) identification rate (IDR) - percentage of strides where
only a single ICI is detected, 2) miss rate (MR) - percentage
of strides where no ICI is detected, 3) false alarm rate (FAR)
- percentage of strides where more than one ICI is detected
and 4) identification error λ - standard deviation of the tim-
ing error (in % of the stride length) between the true and the
estimated ICI. Similar reasoning applies for LCIs. Tests were
conducted on OA and healthy knees together and using only a
single recording from each knee at a speed of 4 km/h on a flat
level. Results are reported separately for comparison. The
leave-one-out technique was used to generate the empirical
distributions in (9a), (9b) and (10) based on the ground truth
CIs from all recordings except one which was used for evalu-
ation. Other recordings from the knee under assessment were
excluded from the distribution calculation. In all tests we used
autocorrelation LPC with 50 ms analysis frames overlapped
by 50% to obtain u(r) and the weights of (2) have been em-
pirically determined as [θslope, θpd, θer] = [0.5, 0.5, 0.5].

Evaluation was performed on a single LPC order and GD
window size. To objectively choose their values we used (11).
The rationale is that, given a good set of candidates, it is pos-
sible for the algorithm to select a good subset and λ would
be low. Conversely, for a bad set no matter how efficient the
algorithm is, λ would be high. In other words, the best value
of λ from a set of candidates is dictated by the set itself.

Costx =
1

J

J∑
j=1

4

(
τrefj − τclj +Nb

lj

)2

(11)

where x denotes the set of reference CIs used, j is the stride
number in a recording of J strides long, lj is the jth stride
length in samples, Nb is the bias in number of samples, τrefj
and τclj are the sample instances of the reference and its clos-
est candidate, in stride j, respectively. We tested for Nb =-
100 to 100 ms with 1 ms steps at 16 kHz sampling frequency
for LPC orders 2 to 20 and GD window sizes 0.05 to 1 (as
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Fig. 4. ICI and LCI timing errors for OA knees

a fraction of the stride rate estimated using autocorrelation).
For practical reasons the 0.05 limit was chosen to limit the
candidates to a number that is manageable by the DP algo-
rithm. The overall cost for a single combination is the mean
of Costici and Costlci. The minimum is found at Nb =-5 ms
which corresponds to order of 2 and window size of 0.05 (see
Fig. 2). Sizes larger than 0.65 generate candidates that are not
suitable for detecting both CIs (not shown). To validate our
choice we ran the algorithm for sizes 0.03-0.07 and compared
the results based on S = β(A/100)+(1−β)[(100−λ)/100],
where A is the average IDR and β is a weight factor set to 0.5.
Depending on the application, β can be larger to favour high
IDR or smaller to favour low λ. The best choice is the one that
yields the highest score, Ŝ = (Sici + Slci)/2. For OA knees
the algorithm performs better with a window size of 0.07 and
for healthy with a size of 0.06. Overall, the best performance
with a score of 0.9124 is achieved with a size of 0.06. Table 1
and Figs. 3 and 4 summarise the results for the selected order
(2) and window size (0.06).

OA
ICI

OA
LCI

Healthy
ICI

Healthy
LCI

IDR (%) 100 97.06 99.52 94.73
MR (%) 0 1.47 0.48 3.17
FAR (%) 0 1.47 0 2.10

Table 1. Average IDR, MR and FAR

5. DISCUSSION AND CONCLUSIONS

The results show that, in the database tested, the algorithm
has detected on average 99.52% of ICIs and 94.73% of LCIs
with an identification error of 13.0% and 16.0% respectively
for the healthy recordings. For OA recordings an average of
100% of ICIs and 97.06% of LCIs have been detected with an
error of 14.6% and 17.0%. An analysis has been performed on
the choice of suitable LPC order and GD window size. Using
stride detection and segmentation based on the DP algorithm,
stride synchronous analysis can now be performed.
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