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ABSTRACT

This paper proposes detection of anomaly acoustic scenes
based on a temporal dissimilarity model. The periodicity
in the temporal variation of acoustic scenes is first pointed
out and then used to build a new stochastic model. In the
new model, the temporal variation is expressed by dissimilar-
ity between current and previous acoustic scenes. Anomaly
acoustic scenes are detected based on the 24-hour periodic
dissimilarity model. Evaluation results using 40-day (1000-
hour) data show that the proposed method can detect un-
known anomaly acoustic scenes with 82.3% F-measure in 0
dB signal-to-noise-ratio conditions.

Index Terms— anomaly acoustic scene detection, anomaly
detection, periodicity, Kullback-Leibler divergence

1. INTRODUCTION

There are serious and growing dangers of terrorism through-
out the world. To make our living environment safer, acous-
tic event detection (AED) for a transient sound and acoustic
scene classification (ASC) for a mixture of transient and con-
tinuous sounds have been shown to be effective in acoustic
monitoring systems for detecting hazardous sounds related to
critical incidents such as screaming[1, 2], gunshots[3], and
explosion[4]. Most of the conventional AED/ASC methods
[5, 6, 7, 8, 9] are based on supervised classification which
requires a prior definition of all possible classes and collec-
tion of training data consisting of hardly encountered haz-
ardous sounds. To tackle this problem, unsupervised detec-
tion methods for anomaly acoustic “events” have been pro-
posed [10, 11, 12]. While the anomaly acoustic “event” has
direct relation to a critical incident, it is not easy to detect due
to its transient nature. On the other hand, anomaly acoustic
“scene” is continuous and easier to detect due to its continuity.
However, there is no literature on anomaly acoustic “scenes.”
Although the anomaly acoustic “scene” may not have direct
relations to critical incidents, it is worth detection and further
investigation.

Outliers [13, 14, 15] and change points [16, 17, 18, 19]
are useful clues for detection of anomaly acoustic scenes.
Outlier detection can be treated as one-class classification
where anomaly is detected as an outlier of a single nor-
mal class. Change point detection models temporal varia-
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tion of time-series data using dissimilarity between current
and previous models, and anomaly is detected as a signif-
icant change representing high dissimilarity. However, in
the case of anomaly acoustic “scene”, definitions of normal
and anomaly depend on time. For example, in a station,
sudden appearance/disappearance of babble noise with the
first/last train is a significant change but normal; silence in
the midnight is normal, but is anomaly in the daytime; and
laughter in the daytime is normal, but is anomaly in the mid-
night. In another word, the definitions of normal and anomaly
are time-dependent under the same environment. To detect
anomaly acoustic “scenes” with time-dependent definitions,
conventional outlier/change detection methods need to train
and store multiple normal models, the number of which is
equal to that of time-dependent definitions. It means that
an unrealistic size of memory and a computational cost are
needed

However, temporal variation of acoustic scene has a pe-
riodicity with a day, a week, a month, and a year to name a
few. From a viewpoint of human activities, 24-hour period-
icity is most significant. The periodicity makes it possible to
establish a statistical model of temporal variation of acoustic
scene instead of a huge number of time-dependent multiple
normal models. The temporal variation can be interpreted as
change of acoustic scene which is modeled with dissimilarity
between current and previous acoustic scene models.

This paper proposes detection of anomaly acoustic scenes
based on a temporal dissimilarity model. The proposed
method models normal temporal variation of time-dependent
acoustic scenes using dissimilarity between current and pre-
vious acoustic scene models. An anomaly acoustic scene is
detected as an “anomaly change” based on 24-hour periodic
dissimilarity model.

2. PROPOSED METHOD

The proposed method models temporal variation of time-
dependent acoustic scenes using dissimilarity between cur-
rent and previous acoustic scene models. Anomaly acoustic
scenes are detected as an anomaly change of acoustic scene
based on 24-hour periodicity of the dissimilarity.

Figs.1 and 2 show a block diagram of the proposed
method and relationships among temporal indices [, m,
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and n appeared in this paper. [ and m, denote a frame in-
dex and a temporal segment index which consists of plural
frames respectively, and n represents time of the day with
24-hour periodicity, whose unit is equal to the segment shift
of m. To calculate the dissimilarity, an input signal x(¢) is
transformed to frame-level feature y (/). Next, a probability
density function (PDF) p(y(l)|m) of y(I) in the tempo-
ral segment m is modeled by a Gaussian mixture model
(GMM). Divergence D(p.,||pm—1) between p,, = p(y|m)
and p,—1 = p(y|m — 1) is calculated and used as temporal
dissimilarity d(m). To detect anomaly scene, a temporal dis-
similarity d(m) at the corresponding time of day n is modeled
as a PDF ¢(d(m)|n). An anomaly score of d(m) is obtained
based on ¢(d(m)|n).

Generally, an acoustic scene in the real environment has
temporal variation. Considering the scene in a station; an
acoustic scene begins with silence before the first train and
babble noise suddenly appears with the first train. The babble
noise continues till the last train at the night changing its sta-
tistical property. After the last train, the acoustic scene goes
back to silence. This temporal variation of acoustic scene has
24-hour periodicity related to human activities. The proposed
method models this temporal variation based on the periodic-

1ty.

2.1. Calculation of dissimilarity

This section explains calculation of dissimilarity. First, the
proposed method extracts an r dimensional frame-level fea-
ture y (/) from an observed acoustic signal z(t). For the
frame-level feature, MFCCs are extracted with a frame length
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20 ms and a frame shift 10 ms (50% overlap). Next, a PDF
pm = p(y(l)|m) of frame-level feature y(I) in a temporal
segment m is calculated; a segment length and a segment shift
are set to 5 minutes and 1 minute (80% overlap) respectively.
To model p(y(l)|m), a Gaussian mixture model (GMM) is
used:

K
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where k, K, p, .., and 3, ,, denote the number of Gaussian
components, an index of the components, k-th mean vector of
P, and k-th covariance matrix of p,,, respectively. p(y(I)|m)
represents a statistical property of sounds occurred in the seg-
ment m and characterizes an acoustic scene of the segment
m. The dissimilarity d(m) in the segment m is calculated us-
ing divergence between the PDF p(y(1)|m) in segment m and
the PDF p(y(l)|jm — 1) in segment m — 1,

d(ﬁl) = D(pmemfl) (2)

There are several alternatives for divergence between GMMs

such as Bhattacharyya divergence[20] and Kullback-Leibler(KL)

divergence[21]. In this paper, for simplification and reduc-
tion of a computational cost, summation of KL divergence
between corresponding Gaussian components is used as an
approximation of KL-divergence between GMMs,
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d(m) represents the temporal dissimilarity between acoustic
scenes in segment m and m — 1. Proposed method models
temporal variation of acoustic scene with scalar-valued dis-
similarity d(m) instead of storing the high dimensional scene
models p(y|m).

2.2. Anomaly detection with temporal dissimilarity model

The proposed method models temporal variation of acoustic
scenes using dissimilarity d(m). Generally, acoustic scenes
in a real environment have temporal variation with 24-hour
periodicity related to human activities. The proposed method
models this temporal variation based on the periodicity.

The proposed method models a statistical property of
d(m) at each time of day n with a simple Gaussian distribu-
tion. n represents time of the day with 24-hour periodicity,
whose unit is equal to the segment shift of m. Because there
are 1440 minutes in a day and the segment shift m is set to
1 minute, n is an integer of 0 — 1339 and m and m + 1440
represent the same time of the day n. Thus, m and n satisfy

“

m=n

(mod 1440).
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Fig. 3. 24-hour periodicity of dissimilarity

The temporal dissimilarity model g(d(m)|n) at time n is de-
fined as follows:

q(d(m)[n) = N(d(m)|pn, on) )]

To estimate a mean p,, and a variance o, d(m) of corre-
sponding time of the day n,

d(n),d(n + 1440), d(n + 1440 x 2), ... (6)
are used. Once ¢g(d(m)|n) is obtained, an anomaly score
e(m.)of an acoustic scene in a new temporal segment m.,
is calculated based on the probability

e(my) = q(d(m.)|n.) = N(d(m.)|pn, , on,) @)

where n, represents the corresponding time of the day of m.
and satisfies

my, =n, (mod 1440). (8)
Using the anomaly score e(m,), the segment m, is deter-
mined as anomaly acoustic scene based on the following cri-
teria:

(e(m.) <o),

(e(my) > a). ©)

normal

d(m.) = {anomaly
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Table 1. Parameter setting for the evaluation.

‘ Parameter ‘ Value ‘
data length 40 days (1000 hours)
sampling rate 48 kHz
frame-level feature MFCC, A, AA

order of MFCC 13

frame length 20 ms
frame shift 10 ms (50% overlap)
number of GMM components 128
segment for GMM 5 minutes

segment shift 1 minute (80% overlap)

3. EXPERIMENTS

For evaluation, 40-day data is recorded consecutively at a sub-
way station. Table 1 shows a parameter setting used in the
evaluation.

3.1. Qualitative evaluation

Fig. 3 shows temporal variation of dissimilarity d(m) ex-
tracted from one week data. Figs. 3-(a) and 3-(b) represent
d(m) in weekday and weekend respectively. Figs. 3-(c) and
3-(d) represent show mean and standard deviation of temporal
dissimilarity model ¢(d|n) in weekday and weekend respec-
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Fig. 4. Experimental results

tively. Each line represents d(m) at corresponding time of
the day. Blue bold line and red area show mean and stan-
dard deviation respectively. Some characteristics of d(m) are
indicated from Fig. 3:

e The temporal variation of d(m) has a similar behavior
every day.

e The temporal variation of d(m) has different charac-
teristics in weekdays and the weekend (Fig. 3-(a) and

3-(b)).

e d(m) varies in accordance with human activities: si-
lence of midnight, the first/last train, babble noise in
the daytime, and so on.

The temporal variation of acoustic scene in the real environ-
ment is modeled properly by the dissimilarity d(m).

In addition, outliers shown in 3-(b) are checked by arti-
ficially and it is confirmed that all the outliers show unusual
scenes of the environment; appearance of a garbage truck in
midnight, irregular operations for construction, cleaning, and
some party events.

3.2. Quantitative evaluation

The detection performance of the proposed method for un-
known anomaly sounds is evaluated with 40-day recorded
data. The temporal dissimilarity model ¢(d|n) is trained from
data of the first week. Evaluation data is made by adding
anomaly sounds, which consists of shouts of human crowd,
to the original data to simulate panic of human crowd in the
subway station caused by some critical incidents such as a riot
and terrorism. Sounds are used from Sound Ideas Series 6000
General Sound Effects Library [22]. Duration of each added
sound is several tens of seconds. Each sound is added at ran-
dom temporal positions with three SNRs (signal-to-noise ra-
tio): 0 dB, 10 dB, and 20 dB. Detection performance is eval-
vated with segment-base recall, precision, F-measure in a
day.
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With evaluation, two other alternatives of divergence cal-
culation for dissimilarity d(p,||pm—1) are tested. One is the
difference of average power of signal between segment m and
m — 1. Another one is a Euclid distance between Gaussian
super vectors, which are made by concatenating mean vectors
of each Gaussian component of p(d|m) and p(d|m — 1):

K
Devc (PmllPm-1) = Y _ lthim — prm—1]>. (10)
k=1

Fig. 4 shows evaluation results. At 20 dB, all dissimi-
larity can detect anomaly acoustic scenes with high perfor-
mances. At low SNRs, temporal variation of power does not
work at all. Dissimilarity with the KL divergence shows low
degradation of performance at low SNRs compare to the Eu-
clid distance. This is because KL divergence can express dif-
ferences of not only means but also covariance, so the KL
divergence out performs the Euclid distance at low SNRs.
It should be noted that the evaluation data includes added
anomaly scenes and real anomaly scenes in the original data.
The real anomaly scenes are treated as normal scene in the
evaluation metrics and cause inevitable degradation of preci-
sion.

4. CONCLUSIONS

This paper has proposed detection of anomaly acoustic scenes
based on a temporal dissimilarity model. The periodicity
in the temporal variation of acoustic scenes has been first
pointed out and then used to build a new stochastic model.
The temporal variation is expressed by dissimilarity between
current and previous acoustic scenes. Anomaly acoustic
scenes are detected based on the 24-hour periodic dissim-
ilarity model. Evaluation using 40-day (1000-hour) data
have shown that the proposed method can detect unknown
anomaly acoustic scenes with 82.3% F-measure in 0 dB
signal-to-noise-ratio conditions.
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