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Abstract—Monitoring acoustic emission from mechanical sys-
tems is an effective non-invasive way of diagnosing both system
performance as well as short-term/long-term system failures. A
difficulty however in fault detection in such systems is inter-class
variability caused by non-uniform or unknown load conditions
which decrease the classification accuracy. In this paper, a
scattering transform is employed to diagnose gearbox faults
using acoustic emission analysis. The results analysis and solution
shows that a two layer scattering transform can diagnose four
gearbox faults with an average accuracy of 97% even if the
system is not exposed to data of all loads in the training phase.

Index Terms—Acoustic wave, Fault diagnosis, Discrete wavelet
transforms, Scattering transform, Support vector machines

I. INTRODUCTION

A. Motivation

Gears, by changing the ratio of torque and speed, are
important parts of many mechanical systems in industrial
applications such as wind turbines, and electrical vehicles.
An unpredicted fault in gearboxes may cause failure for the
whole system resulting in a potential catastrophic disaster.
Developing automatic fault diagnosis algorithms for these
machines has received much attention from researchers during
the last three decades [1, 2].

B. Prior Work

Fault diagnosis in mechanical systems can be done using
vibration signal [3–5] or acoustic emission [6–8]. The majority
of prior fault diagnosis algorithms are data-driven approaches.
In this approach, the fault diagnosis is considered as a pattern
recognition problem and signal processing techniques are
applied to one these measurements to extract features. Next,
the health state of the machine is diagnosed by classifying
the extracted features. The key difference among prior data-
driven methods is related to the feature extraction technique.
Frequency domain features are proposed in [9, 10]. The
authors in [11, 12] proposed wavelet transform for feature
extraction. Empirical mode decomposition is also used in
[13, 14].

In spite of the number of proposed methods, existing
techniques suffer from low accuracy, limiting the number of
faults that they can diagnose. A limiting factor is the variabil-
ity caused by changes in the load condition. This becomes
more challenging in machines with continuous load changes
like coal mill, compressors or variable speed machines like
pumps and conveyor belts or electric vehicles. The majority
of prior works are developed to diagnose the steady state of
vibration or acoustic signals in frequency domain which is not
applicable to such non-stationary scenarios [15]. This topic has
become a mainstream in research in this field recently. Authors

in [16] used the Gabor wavelet to model the transient trends in
an induction motor application. Complex wavelet analysis is
exploited in [17] to extract features of vibration signal which
are robust against load condition. A scale invariant method is
proposed in [18] to capture non-stationary trends.

C. Key Contribution

In this paper, we propose an automatic fault diagnosis
method for monitoring gearbox health status based on acoustic
emission. We address the problem of variable load and non-
stationarity in measurements from a feature extraction per-
spective. Specifically, we use the scattering transform for this
purpose which is a robust representation against deformation
caused by a change in load conditions. The proposed method
has an affordable computational cost for real-time implemen-
tation and achieves high overall accuracy.

II. SIGNAL PROCESSING FRAMEWORK

We assume that the acoustic wave for various loads are a
deformed version of each other by some time warp. In this
section, the mathematical framework of our feature extraction
method which is invariant against this deformation is briefly
introduced.

A. Deformation and Notion of Stability

In the steady state analysis, the frequency domain is a
useful tool to extract features from measured signals. Let
x̂(ω) =

∫
x(t)e−iωtdt denote the Fourier integral of a signal

x(t) ∈ L2
R. If xc(t) = x(t − c) is a deformed version of

x(t) by translation, then |x̂c(ω)| = |x̂(ω)|. So the modulus
of the Fourier transform is a representation of signals which
is invariant against translation or in other words it rejects
variability caused by translation. In practice, translation is
not the only possible deformation which causes a variability.
Time-warping is a more general class of deformation which is
modeled as xτ (t) = x(t− τ(t)) with |τ ′(t)| < 1. Time warp
is a broad model for deformation used in several signal pro-
cessing applications such as speech processing [19]. Here, the
deformation can be quantified using |τ ′(t)|. If the derivative
is zero the deformation simplifies to a pure translation.

Suppose Φ(x) is an arbitrary representation (feature) of x(t)
and Φ(xτ ) is the same representation for xτ (t), the deformed
version of x(t); then, Φ(·) is considered as a robust repre-
sentation if the difference between Φ(x) and Φ(xτ ) caused
by the deformation is small. This similarity can be quantified
using the Euclidean norm as d(x, xτ ) = ‖Φ(x) − Φ(xτ )‖.
Basically, we are looking for a Φ(·) which is invariant to this
deformation. This invariance can be characterized using notion
of stability. Φ(·) is stable if a small change in x(t) does not
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lead to a big change in d. Mathematically, stability is defined
as Lipschitz continuity condition respect to the norm, if there
exists a constant C > 0 such that for all τ with sup

t
|τ ′(t)| < 1:

‖Φ(x)− Φ(xτ )‖ ≤ C sup
t
|τ ′(t)| ‖x‖ (1)

where sup denotes supremum of a set. The constant C gives
a measure of stability. Indeed, if the Lipschitz condition holds
true, a change in x(t) caused by time warp leads to a linear
change in its representation. Since, time-warping is locally
linearized by Φ(x(t)) and Φ(x)−Φ(xτ ) can be approximated
by a linear operator if sup|τ ′(t)| is small. In other words, in the
feature space Φ(x) and Φ(xτ ) are on the same hyperplane and
the corresponding features do not spread all over the space.

It can be shown that the Fourier modulus is not stable
to time-warp deformation. In the Fourier representation, time
warp changes each frequency component differently, (i.e.,
high frequency content are changed more than low frequency
content, thus causes instability [19]). The notation of stabil-
ity helps us to understand why feature extraction methods
based on steady state analysis do not work for variable load
condition. Technically, a deformation caused by a change in
load spreads feature points corresponding to the deformed
signals in the feature space in a random manner and increases
the overlapping of classes. So, we are looking for a feature
extraction method such that the feature point corresponding to
a time warped signal lie on a hyperplane instead of spreading
in the feature space.

B. Analytic Wavelet Transform Modulus

The analytic wavelet transform, which is robust against shift
deformation, can be calculated using constant Q filterbanks
[20]. A wavelet like ψ(t) is a band pass filter where ψ̂(0) = 0.
In the analytical wavelet transform ψ̂(ω) ' 0 for ω < 0 [21].
A dilated version of ψ(t) with the central frequency of λ > 0
can be written as ψλ(t) = λψ(λt) or in frequency domain
ψ̂λ(ω) = ψ̂(ωλ ), where the central frequency of ˆψ(ω) is
normalized to 1 and Q is chosen as the number of wavelets per
octave, λ = 2k/Q for k ∈ Z, which guarantees the bandwidth
of ψ̂λ to be in order of Q−1 and its central frequency is at
λ. In this way, different ψ̂λ’s cover all frequency axis except
DC which is covered using a low-pass filter φ. Let Λ denote
the set of all values of λ, the wavelet transform of signal x(t)
can be calculated by convolution of these filters:

Wx = (x(t) ∗ φ(t), x ∗ ψλ(t)) t ∈ R, λ ∈ Λ (2)

Here, t is not critically sampled as the wavelet bases, so this
representation is redundant. The filters φ and ψ need to be
designed such that the entire frequency axis is covered which
requires:

A(ω) = |φ̂(ω)|2 +
1

2

∑
λ∈Λ

(|ψ̂λ(ω)|2 + |ψ̂λ(−ω)|2) (3)

for all ω ∈ R satisfies [22]:

1− α ≤ A(ω) ≤ 1 for α ≤ 1 (4)

By multiplying both sides of this inequality by |x̂(ω)|2 and
apply Plancherel theorem one can obtain [23]:

(1− α)‖x‖2 ≤ ‖Wx‖2 ≤ ‖x‖2 (5)

where ‖Wx‖2 =
∫
|x ∗ φ|2 +

∑
λ∈Λ

∫
|x ∗ ψ|2 is the squared

norm of wavelet representation and ‖x‖2 =
∫
|x(t)|2dt is

the norm of signal. In Eq. 5, the lower bound guarantees a
stable inverse while the upper bound shows that wavelet is a
contractive operator [19]. If α = 0, then W becomes a tight
frame and x(t) can be reconstructed as x(t) = (x ∗ φ(t)) ∗
φ(−t) +

∑
λ∈ΛReal{(x ∗ ψ(t)) ∗ ψ(−t)} [22].

In the scattering transform, the wavelet modulus is used
for feature extraction. In spite of Fourier transform, which is
not possible to reconstruct the signal just using its Fourier
modulus, it is possible to reconstruct the signal using just
modulus of complex wavelet [24]. This is due to the redundant
representation in Eq. 2. In addition, since the complex modulus
is contractive, ||a| − |b|| for any (a, b) ∈ C, the wavelet
modulus operator, |W | is contractive:

‖|W |x− |W |x′‖2≤ ‖Wx−Wx′‖2≤ ‖x− x′‖2 (6)

C. Wavelet Scattering Transform

The main idea behind the scattering transform is to analyze
the signal using analytical wavelet and then average the
wavelet coefficients over time to extract features. The intuition
behind the averaging coefficient is to reduce the variability in
features and is similar to averaging the Fourier coefficient over
Mel frequency intervals to extract Mel frequency cepstral co-
efficients (MFCC) in speech processing [25]. However, MFCC
loses information by averaging, while scattering transform
preserves the reconstruction information [26].

In the scattering transform, a locally translation invariant
descriptor is obtained by a time average S0x(t) = x ∗ φ(t)
which removes the high frequency contents. However, these
high frequency content are recovered by a wavelet modulus
transform as |W |1x = (x ∗ φ, |x ∗ ψλ1

|). The first order of
the scattering coefficients can be obtained as S1x(t, λ1) =
|x ∗ ψλ1

| ∗ φ. These coefficients measure the average signal
amplitude in the frequency interval covered by ψλ1 with
bandwidth corresponding to Q1. In essence, they are calculated
by a second wavelet modulus operator as |W |2|x ∗ ψλ1

| =
(|x∗ψλ1

|∗φ, ||x∗ψλ1
|∗ψλ2

|). So, the second order scattering
coefficients are S2x = ||x ∗ ψλ1

| ∗ ψλ2
| which are computed

by a ψλ2
with a bandwidth corresponding to Q2. Iterating this

process defines the scattering coefficients at any desired order.
For any m ≥ 1, iterated wavelet modulus convolutions

are written as Um(t, λ1, · · ·λm)x = |||x ∗ ψλ1 | ∗ · · ·| ∗ ψλm |
where the mth order wavelet have an octave resolution of
Qm and they satisfy condition in Eq. 4. Next; the mth order
scattering coefficients are obtained by averaging Umx with φ
as Smx(t, λ1, · · · , λm) = Umx(t, λ1, · · · , λm) ∗ φ. So, the
scattering decomposition of a signal with the maximum order
of l is an iterative operation by applying |W |m+1 on Umx to
obtain Smx and Um+1x for 0 ≤ m ≤ l where U0x = x. The
scattering transform is the collection of all coefficients from
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each order Sx = {Smx|0 ≤ m ≤ l}. Fig. 1 shows the the
decomposition graph.

Fig. 1. Scattering transform of signal x by iterating the |W |m operator. The
black dots show the output nodes.

One can prove that the scattering transform has the follow-
ing properties [23]:
• Time warp deformation stability: it satisfies the Lipschitz

condition, ( i.e., there exist a constant C for any x such
that ‖Sx− Sxτ‖≤ Csup

t
|τ ′(t)| ‖x‖).

• Contraction: since scattering is calculated by wavelet
modulus, it is a contractive transform, (i.e., ‖Sx−Sx′‖≤
‖x − x′‖). As a result of this property, the scattering
transform is robust against the additive noise.

• Energy conservation: if the chosen wavelet is a tight
frame, then the scattering transform preserves the norm,
(i.e., ‖x‖2 = ‖Sx‖2 + ‖Ul+1x‖2). As a result, ‖Ul+1x‖2
vanishes as l → ∞. In practice, the coefficients become
very small after a few iterations.

These properties make the scattering transform a suitable
representation for signal classification tasks. In the next sec-
tion, we propose a robust fault diagnosis algorithm based on
this transform.

III. FAULT DIAGNOSIS METHODOLOGY

A. Signal Processing Pipeline

We propose a monitoring method for diagnosing gearboxes
using the acoustic emission signal picked up by an free field
microphone. Fig. 2 shows the signal processing pipeline of the
proposed method.

Scattering
Transform

Post 
Processing LDA SVM

Fault 
Label 

Fig. 2. The proposed four-stage fault diagnosis algorithm based on acoustic
emission of a gearbox picked up by an open field microphone.

In the first step, the acoustic signal is analyzed with the
scattering transform. We use a two layer (l = 2) scatter-
ing network with the normalized Morlet wavelet defined as
ψ(t) = e−iω0tθ(t) = e−ite−t

2/2σ2

, which is simply a modu-
lated Gaussian function. In the frequency domain, ψ̂(ω) =
θ̂(ω − 1) is a low-pass filter with a Gaussian shape with
its central frequency at the normalized frequency of 1. The
Morlet wavelet is almost an analytical function since |ψ̂(ω)|
is small for ω < 0 but not zero. However, strictly speaking,
Morlet is not an admissible wavelet [19]. For satisfying the

admissibility condition we use ψ̂ = θ̂(ω−1)−θ̂(ω)θ̂(−1)/θ̂(0)
which guarantees ψ̂(0) = 0. The parameter σ2 determines
the bandwidth of the wavelet which is assigned based on
the choice of Q in scattering network. Fig. 3 shows Morlet
wavelets for Q1 = 8 and Q2 = 1 in our scattering network.

0 0.5 1 1.5 2

0.5

1.0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.5

1.0
(a)

(b)

Fig. 3. Frequency response of Morlet wavelet used in scattering network.
(a) First layer with Q1 = 8, (b) Second layer with Q2 = 1.

In the second stage, the scattering coefficients are post-
processed to get a better classification rate. This post pro-
cessing has two steps: first, the scattering coefficients are
normalized to be invariant against a change in the amplitude of
input signal by dividing the coefficients in each layer by cor-
responding coefficients in the predecessor layer where the first
layer coefficients are normalized by S0x. After normalization,
the log function is applied to the normalized coefficients as a
range compressor. This leads to a better classification accuracy
and also a better visualization contrast.

In the third stage, the dimensions of the feature space is
reduced using linear discriminant analysis (LDA). Basically,
LDA provides a trade-off between reducing the dimensionality
of feature space and maximizing the Rayleigh criterion [27].

In the last stage, a multi-class support vector machine
(SVM) classifier with the radial basis function (RBF) kernel
diagnoses the health state of machine using the extracted
feature. The multi-class classifier is built based on the error
correcting output code scheme.

B. Test Setup
For testing the proposed fault diagnosis method, a pinion-

wheel gearbox drive by an electric motor is used [28]. A
defect in one tooth of pinion, wheel and both pinion and wheel
simultaneously are studied. The acoustic emission of gearbox
is recorded using an open field microphone at the rate 5KHz
for 5 loads conditions (20%, 40%, 60%, 80% and 100%) and
four classes f0 corresponding to fault-free and f1, f2, and f3

which are pinion, wheel and simultaneous faults, respectively.
Each recoding has a duration of 60 seconds and is repeated 5
times. Fig. 4 shows the corresponding acoustic waves for each
fault.

IV. EXPERIMENTAL RESULTS

The collected dataset is processed by the aforementioned
scattering network and 7, 300 features from each class were
extracted. The dimensionality of the feature space is reduced
from 354 to 11 using LDA. The dimension of new feature
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Fig. 4. The Acoustic emission corresponding to four
classes: Time domain (left) and periodogram (right).
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Fig. 5. Scatter plot of features in 3D space.
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Fig. 6. ROC of classifiers.

space is chosen based on the proportional cumulative variance
of eigenvalues of LDA [27]. Fig. 5 shows the projected
features to the subspace spanned by the first three largest
eigenvectors of LDA.

Accuracy of the proposed algorithm is measured twice using
5-fold cross validation. In the first test (Test 1 in Table I), the
dataset is shuffled and four folds of data are used for tuning
the LDA and the SVM classifier while system’s accuracy is
tested with the fifth fold. In this experiment, the system was
exposed to data from all loads in the training phase. The
average accuracy of 98.25% is obtained. For investigating the
performance of the system to a load which is not exposed
to the system in training phase, we arranged the second test
(Test 2 in Table I). Here, we used data from 4 randomly chosen
loads for training and we measured accuracy using data from
the fifth load. The average accuracy of 97.61% is obtained.
The confusion matrix of both tests are tabulated in Table I.
The average accuracy of the system in both tests are almost
equal.

TABLE I
CONFUSION MATRIX OF CLASSIFIERS (%)

Classified (Test 1) Classified (Test 2)
Target f0 f1 f2 f3 f0 f1 f2 f3

f0 98.40 0.50 0 1.10 97.15 1.05 0 1.80
f1 1.70 98.30 0 0 2.35 97.25 0 0.40
f2 0.40 0 98.50 1.10 0.60 0.08 98.14 1.18
f3 1.07 0 1.13 97.80 1.17 0 0.93 97.90

Accuracy 98.25 97.61
AUROC 100 99.0 99.5 99.1 98.2 98.0 99.3 99.7

A better way of comparing the two classifiers, is their
receiver operating curves (ROC). Fig. 6 shows the ROC of
classifiers in both tests. An ideal ROC is unit step between
zero and one. This quality can be quantified by measuring the
area under the ROC (AUROC) which is equal 1 (or 100%) in
an ideal case. The last row of Table I shows the AUROC for
each classifier. Comparing ROC curves also confirms that the
performance of both classifiers are almost equal. However, in
the second test, the system was not exposed to different loads
for training and testing. This shows that scattering transform
extracts features which are robust against variations in the
load. Fig. 7 shows the scattering transform versus time of the
acoustic emission of different classes and loads. Comparing
the scattergrams reveals that although the scattering transform

L= 20% L= 40% L= 60% L= 80% L= 100%

time

S
(a) Fault-free (f0)

L= 20% L= 40% L= 60% L= 80% L= 100%

time

S

(b) Pinion Fault (f1)

L= 20% L= 40% L= 60% L= 80% L= 100%

time

S

(c) Wheel Fault (f2)

L= 20% L= 40% L= 60% L= 80% L= 100%

time

S

(d) Simultaneous Fault (f3)

Fig. 7. Scattergram of the acoustic emission for four classes for different
loads (L = 20%, 40%, 60%, 80% and 100%)

captures fine differences between different classes, it gives a
similar representations for different loads.

We implemented the entire signal processing pipeline de-
picted in Fig. 2 in MATLAB on a PC running Ubuntu Linux
14.04 at a clock rate of 3.4 GHz. The average runtime
(wall-clock) of processing a window of acoustic wave with a
duration of 10 seconds is almost equal to 0.9 sec which shows
the possibility of real-time implementation of the proposed
method on this machine.

V. CONCLUSION

In this study, a novel method for fault diagnosis of gear-
boxes using the acoustic emission was proposed. This method
was based on a wavelet scattering transform which provides
a robust feature extraction against deformations caused by
load changes in this signal (i.e. unsupervised/open set). The
proposed method has an affordable computational cost for real-
time implementation. Exploring the application of this new
tool in other systems with different measurement modalities
is our research plan for future work.
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