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ABSTRACT

Ambient infrasound with frequency ranges well below 20 Hz

is known to carry robust navigation cues that can be exploited

to authenticate the location of a speaker. Unfortunately, many

of the mobile devices like smartphones have been optimized

to work in the human auditory range, thereby suppressing in-

formation in the infrasonic region. In this paper, we show

that these ultra-low frequency cues can still be extracted from

a standard smartphone recording by using acceleration-based

cepstral features. To validate our claim, we have collected

smartphone recordings from more than 30 different scenes

and used the cues for scene fingerprinting. We report scene

recognition rates in excess of 90% and a feature set analysis

reveals the importance of the infrasonic signatures towards

achieving the state-of-the-art recognition performance.

Index Terms— Acoustic Filtering, Classifier, Localiza-

tion, Authentication, Infrasound

1. INTRODUCTION

Speech-based authentication has several advantages compared

to other biometric techniques in that it can be performed re-

motely using a mobile device without the need for any spe-

cialized equipment [1]. However, the remote access capabil-

ity also introduces vulnerabilities that may result in compro-

mised security of the biometric technique [2].This vulnerabil-

ity could be mitigated by using a two-stage authentication (as

in passcodes) technique or by using side-channel information

like the location of the acoustic channel or background of the

speaker [3–5].

In this regard, infrasound – or sound with frequencies less

than 20 Hz – has been known to capture signatures that can

be used to identify many geophysical phenomena, such as

seismic activity, air turbulence, and wind noise [6–8]. Some

of these signatures are strongly correlated with the ambient

acoustic environment and hence could be used to uniquely
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identify or fingerprint the spatial location. For instance, an in-

door room can form a Helmholtz resonator which can sustain

infrasonic standing waves, whose spatial properties depend

on the room size and location of the windows or doors [9,10].

Literature has shown that animals, such as the common pi-

geon, can detect infrasound around 1 Hz and that these cues

may aid in their ability to navigate accurately across large

spans where other senses such as smell and sight are limited

in their usefulness, yet these features have not been leveraged

in current state-of-the-art localization or authentication sys-

tems [6, 11–13]. Exploiting the audio modality for location

tracking can provide an alternative to the likes of GPS, whilst

maintaining a low-cost and low-burden to the user [14].

In this paper, we will explore how these infrasonic cues

can be extracted using a standard smartphone. This presents a

challenge because smartphone microphones are optimized for

the human auditory range, often in the range of 100 Hz to sev-

eral kHz. The hypothesis is that by measuring the acceleration

of the auditory cepstral features, one could infer the underly-

ing infrasound that is uniquely present in an acoustic scene.

In addition, these infrasonic cues can provide features that are

robust to sources typically considered “noise” (speech, music,

and other higher frequency sources) for the purposes of scene

fingerprinting and classification. We verify our claim by con-

ducting a scene classification in a variety of settings, such as:

laboratory, classroom, elevators, and multi-purpose rooms – a

representative subset of which are shown in Fig. 1.

1.1. Related Works: Audio-based

The notion of using auditory features for localization has been

studied in many forms by several researchers [15–18] to vary-

ing levels of success. In this paper, we will use the published

results from [18] as the benchmark target since it achieved a

high accuracy in passive sensing from a smartphone; more-

over, their dataset has been released for public use. In passive

sensing, the audio data are collected from the microphone

without disturbing the environment, whereas in active sens-

ing, a stimuli is generated and the environment’s response

to the stimuli is measured in an attempt to obtain more dis-

criminating information, akin to the SONAR concept [17].
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Fig. 1. Rooms under consideration from UTokyo dataset (See

Section 2.2). Clockwise from bottom-left are location #s: 5,

15, 19, and 27.

Researchers have shown that an active schema can generate

enough information that a room’s geometry can be recon-

structed, albeit under specific recording parameters [19, 20].

Table 1 shows classification results that have been published

based on audio features alone. It should be noted that the

audio features could be used in conjunction with the afore-

mentioned modalities to provide superior location estimates.

Work # of Active/ Accuracy Sample

Locations Passive Length

[15] 5 Passive 80% 15s

[16] 10 Passive 20% 3600s

[17] 25 Active 85% 10s

[18] 33 Passive 69% 30s

Table 1. Contemporary Audio-based Localization

2. PROPOSED METHOD

2.1. Overview

One design objective for the design of an acoustic scene recog-

nition platform is to have a path towards a low-power imple-

mentation that can be deployed on a smartphone. Therefore,

we have used a filter bank for feature extraction and a sim-

ple artificial neural network (ANN) classifier, both of which

can be fabricated on dedicated silicon to operate with sub-

microwatt power consumption [21–23]. The ANN backend

approach will also allow for any computationally intensive

tasks to be delegated to a remote server, while allowing the

client side to maintain a low-power profile during operation.

2.2. Datasets

Testing and validation is conducted on three different sets of

data. The first (henceforth referred to as: UTokyo dataset)

was collected using a mid-tier Android smartphone released

in 2013, the LG Optimus L-05E with a sampling rate of 44.1

kHz and 16 bit depth; it contains a sample of 12 rooms from a

single building as well as a collection of 30 locations (includ-

ing the aforementioned 12 rooms) across multiple buildings

– all samples are collected from the Hongo main campus of

The University of Tokyo, Japan. Data were collected dur-

ing two sessions with a temporal spacing of approximately 36

hours between sessions. Each session collected four samples

of audio lasting 10 s per sample. Of the four samples, two

were taken near what would be considered the entrance of the

room with a vertical and horizontal smartphone orientation.

The remaining two samples were collected near the center of

the room, also with a varying smartphone orientation. In the

case of locations that did not have an obvious entrance (such

as hallways or outdoors), the two sets of samples were cho-

sen with at least 6 m of spacing. To clarify, each location will

have 2 visits · 4 samples · 10 s = 80 s of data.

The second dataset (MSU dataset) was recorded with an

Olympus Linear PCM Recorder LS-10 at a sampling rate of

96 kHz and 24 bit depth, and contains 15 scenes of audio,

collected from within the Michigan State University (MSU)

Engineering Building. A similar procedure as in the UTokyo

dataset for location/orientation was carried out. In this dataset,

the visits were timed to be one week apart instead of one-and-

a-half days apart.

The final dataset being considered was from previously

published work by Tarzia et al., we utilize the 33 room passive

and 24 room with the HVAC off subsets, for details on these

datasets, we refer readers to [18, 24].

2.3. Feature Selection

For decades, the Mel-frequency cepstral coefficients (MFCCs)

have been a popular transformation for purposes of speech

recognition and have also proven useful in modeling urban

soundscapes [25, 26]. It is common knowledge in the field

that features such as the log energy, zero crossing rate, energy

envelope, spectral power, delta coefficients, and wavelet de-

compositions may provide features with favorable character-

istics when applied to audio-based classifiers. Based on this

knowledge, and after considering a variety of window sizes

ranging from several ms to hundreds of ms, as well as their

shape and overlap, we created an initial feature vector dimen-

sion in excess of 600 for each sample in the passive dataset

from [18].

To determine the features that are conducive to scene fin-

gerprinting, we apply a Sequential Floating Forward Selec-

tion (SFFS) algorithm to rank the features. For the purposes

of this paper, we did not fully train an ANN classifier during

each iteration, instead, we used a simple k-Nearest Neighbor

classifier to save time during SFFS – even then this ranking

took over 600 hours of computation. All top ten of the ranked

features were based on MFCC ∆−∆, a promising result that

shows the importance of cepstral acceleration features. In ex-

amining the top 100 ranked features (out of 578) all 100% of

the ∆−∆ and 0th cepstral features tested were selected, re-
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gardless of the parameters used, and approximately 50% of

the tested energy and mode features ranked in the top 100.

The remaining features had less than 20% of their features

ranked in the top 100.

From the SFFS results, the most discriminative set of 10

MFCCs with a sub-16 kHz frequency response were selected,

with the parameters of 50% overlap and 125 ms rectangular

time window. The 0th cepstral and log energy of the sam-

ple were also selected for incorporation into the feature set,

thereby resulting in a feature vector with a dimension of 12;

from this, we calculated the ∆−∆ features to get a final fea-

ture set with a dimension of 24.

2.4. Classifier

Scene classification is done by a basic two-layer ANN from

MATLAB with training being done offline from the smart-

phone. In this manner, the pre-calculated biases and weights

can be uploaded to the smartphone to allow for a quick and

low-power classification in the field.

To match the feature set dimension, the input layer of the

ANN has 24 nodes and accepts a feature vector that is normal-

ized to a magnitude of one. The optimal number of hidden

nodes was empirically determined as 69, with an additional

w0 bias node to promote stability during the training process.

Each node uses a hyperbolic tangent sigmoid activation that is

characterized as ϕ = 2 (1 + exp(−2n))
−1

. The output node

uses a SoftMax function ΣM = exp(n) (Σ∀n exp(n))
−1

.

MATLAB’s built-in cross entropy fitness function is uti-

lized during the training process, hence resulting in a smoother

network function with improved generalization. 50% of the

collected data was used for training, with 15% of that data be-

ing used as a validation set to reduce the chance of overfitting

the network.

3. FINDINGS & RESULTS

3.1. Synthetic Infrasound

To validate the claim that acceleration-based cepstral features

can provide discriminatory features in the presence of infra-

sonic signatures, an ideal single frequency sinusoidal of 1

Hz at a sampling rate of 44.1 kHz was generated and passed

through a filterbank with parameters based on the SFFS rank-

ing. The corresponding feature vector was non-zero, thereby

confirming that features were being generated based only on

an infrasonic stimuli. Subsequently, a 500 Hz sinusoidal is

also tested to confirm the feature extraction method also works

in more traditional audio ranges. Finally, a superposition of

the 500 Hz with the 1 Hz (with 20 dB attenuation applied to

the lower frequency to emulate the frequency response of a

typical microphone) signal is also tested. The 21st dimension

of the resulting feature vector, which is a ∆−∆ or acceler-

ation feature, is presented in Fig. 2. From inspection, it is

clear that the proposed feature extraction will generate differ-

ing feature vectors when presented with infrasonic cues, even

if said infrasonics are mixed with higher frequency sources.
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Fig. 2. Plots showing the selected feature set is discriminating

between infrasound only (1 Hz in magenta), audio-only (500

Hz in cyan), and a mixture of the two (in orange).

3.2. Classification Results

After data are collected and the features extracted, 50% of

the feature vector is used for training the classifier and the

remaining 50% is relagated for testing the performance of the

trained classifier. Although the training of the classifier could

be done on-the-fly by a smartphone, it is more efficient to pre-

calculate the ANN parameters ahead-of-time; therefore, the

classifier training was completed on a 2011-era Core i5 dual

core system (Intel(R) Core(TM) i5-2520M) with MATLAB

R2015b. The resulting bias and weight values were sent to

a smartphone to carry out the final classification. Since the

implementation of training code takes advantage of parallel

computing principles, it is possible to scale this method to an

industrial-sized dataset and maintain reasonable training time

by utilizing larger computing services. In practice, this batch

training need only occur once, with continual updates coming

from online training methods performed by the smartphone to

maintain optimal classifier performance.

After training, the ANN is fed the extracted features dur-

ing an epoch and will return a maximally responding node

as the classified location. By virtue of the selected window

size and overlap, the ANN can handle 20 updates per sec-

ond, a rate that would be high enough for real-time tracking

or authentication purposes. To demonstrate the classification

error of the system, we supply a trained ANN with the ex-

tracted features from the UTokyo 30 location dataset. Fig. 3

shows the classification error per location for the training and

testing datasets. The majority of scenes have an error rate

below 20%, and the average error rate remains below 10% –

only a single location suffered bad detection rates (which is

defined as 100% − error rate). This particular scene is an
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Fig. 3. Error per location for the UTokyo 30 dataset.
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Fig. 4. Confusion matrix of artificial neural network on

UTokyo 30 dataset.

open hallway located near a bank of elevators (elevator’s in-

terior is a separate scene under test), it is not evident why

the extracted features from this location consistently exhibit

poor classification performance. The five-run average detec-

tion rate for the UTokyo 30 training and testing datasets were

91.87% and 90.83%, respectively. The resulting confusion

matrix is presented as Fig. 4, with a blue entry representing

a −1, or deactivated neuron and a red corresponding to a +1
or strongly responding neuron. From this confusion matrix,

we can see that as the input location is varied during testing

(sequentially from 1 to 30), the scene classification properly

tracks the ground truth. We can also note that when the clas-

sification is incorrect, it tends to be a spurious event and not

one that is sustained.

Presented in Table 2 are the overall classification errors,

averaged over five separate runs for multiple datasets. When

compared to the dataset from [18], the proposed method shows

an improvement of around 25 percentage points with respect

to detection rates (results from [18] at 69%, our proposed

method 94%). We are also reporting low error rates for the

MSU dataset and both the UTokyo 12 dataset which was lim-

ited to a single floor on a particular building and the UTokyo

30 dataset spanning multiple buildings. Another finding is

Dataset Test Train Train

(# Scenes) Error Error Time (s)

MSU (15) 6.03% 5.83% 14.63

UTokyo (12) 4.11% 3.82% 10.71

UTokyo (30) 9.17% 8.13% 52.62

Passive (33) [18] 6.61% 5.59% 115.53

No HVAC (24) [18] 9.38% 7.65% 23.30

All (78) 8.72% 7.35% 762.26

Table 2. Classification Error Rates (five-run average)

that the proposed method has a relatively low classification er-

ror even when combining multiple datasets recorded on vary-

ing devices as we obtained a 7.35% error when classifying

among 78 locations (MSU(15)+UTokyo(30)+Passive(33)). Of

particular interest is the strong performance of this method

in the no HVAC subset from [18], with a detection rate in

excess of 90% even without the fans or compressors from

the HVAC contributing to the signature, which suggests other

uniquely identifying sound generators are present in the en-

vironment. Considering that audio attenuates proportional to

the square of its frequency (i.e. low frequency sounds tend to

pass through barriers more freely and with less absorption or

reflection), and the lack of speech or other common sources

of higher frequency, it is very well possible that infrasound

from distant locations were acting as a triangulating beacon

and contributing to the unique fingerprinting of the scenes.

4. CONCLUSION & REMARKS

We presented a method for scene classification of a speaker

using ambient sounds captured on a smartphone as the source

modality. These results suggest that the use of acceleration-

based cepstral features are mining infrasonic features that are

robust across a variety of scenes and locations. By leverag-

ing these features, we are maintaining a high degree of de-

tection even on large dataset, previously unmatched in the

literature [15–18]. With detection rates exceeding 90% for

datasets containing several dozen scenes, it is now possible

to say that these features alone would suffice for a location

authentication service — even more so when fused with tra-

ditional methods prevalent in industry. The audio modality

can also supplant the traditional methods (GPS, WiFi, etc.)

when they fail, thus providing end users with a high accuracy

method for determining their location in more situations. A

facet that still requires further investigation is the stability of

these features as time progresses. Although the UTokyo and

MSU datasets had one-and-a-half days and one week between

sample measurements, respectively, we did not have access to

audio data over extended periods of time. On a seasonal scale,

it is possible that switching from air-conditioning to heating

could yield significantly different features and impact the am-

bient acoustics of a location.

364



5. REFERENCES

[1] J. P. Campbell Jr, “Speaker Recognition: A Tutorial,”

Proc. IEEE, vol. 85, no. 9, Sep 1997, pp. 1437–1462.

[2] J. H. Lee and R. M. Buehrer, “Characterization and detec-

tion of location spoofing attacks,” Journal of Communi-

cations and Networks, vol. 14, no. 4, 2012, pp. 396–409.

[3] Y. Kawamoto, et al., “Effectively Collecting Data for

the Location-Based Authentication in Internet of Things,”

IEEE Syst. J., Pre-Print, pp. 1–9.

[4] S. Billeb, et al., “Efficient Two-stage Speaker Identifi-

cation based on Universal Background Models,” Biomet-

ric Special Interest Group (BIOSIG), 2014 International

Conference of the, Darmstadt, 2014, pp. 1–6.

[5] L. Xiao, et al., “Fingerprints in the Ether: Channel-Based

Authentication,” Securing Wireless Communications at

the Physical Layer, Springer US, 2010, pp. 311–333.

[6] J. T. Hagstrum, “Infrasound And The Avian Navigational

map,” The J. of Experimental Biology, vol. 203, Mar.

2000, pp. 1103–1111.

[7] J. A. Nystuen and H. D. Selsor, “Weather Classification

Using Passive Acoustic Drifters,” J. of Atmospheric and

Oceanic Technology, vol. 14, 1996, pp. 656–666.

[8] U. Fehr, “Measurements of Infrasound from Artificial and

Natural Sources,” J. of Geophysical Research, vol. 72,

no. 9, May 1967, pp. 2403–2417.

[9] W. T. Plummer, “Infrasonic Resonances in Natural Un-

derground Cavities,” J. Acoust. Soc. Am., vol. 46, no. 5,

1969, pp. 1074–1080.

[10] D. Olivia, et al., “Measurements of low frequency noise

in rooms,” Finnish Institute of Occupational Health,

Helsinki, Finland, 2011.

[11] H. Zhao and H. Malik, “Audio Recording Location

Identification Using Acoustic Environment Signature,”

IEEE Trans. Inf. Forensics Security, vol. 8, no. 11, 2013,

pp. 1746–1759.

[12] M. Fan et al., “Public Restroom Detection on Mobile

Phone via Active Probing,” ACM ISWC’14, Seattle, WA,

U.S.A., Sep 13–17, 2014.

[13] M. L. Kreithen and D. B. Quine, “Infrasound Detec-

tion by the Homing Pigeon: A Behavioral Audiogram,”

J. Comp. Physiol., vol. 129, Aug. 1978, pp. 1–4.

[14] K. Muthukrishnan et al., “Towards Smart Surroundings:

Enabling Techniques and Technologies for Localization,”

First Int. Workshop Loc. Content-Awareness (LOCA),

2005.

[15] J. Du et al., “Catch You as I Can: Indoor Localization

via Ambient Sound Signature and Human Behavior,” Int.

J. Dist. Sensor Networks, vol 2013, id. 434301, pp. 1–16.

[16] M. Azizyan and R. R. Choudhury, “SurroundSense:

Mobile Phone Localization Using Ambient Sound and

Light,” ACM SIGMOBILE, Mobile Computing Commu-

nications Review, vol. 1, no. 13, 2009, pp. 69–72.

[17] M. Rossi et al., “RoomSense: An Indoor Positioning

System for Smartphones using Active Sound Probing,”

ACM AH’13, Stuttgart, Germany, Mar 7–8, 2013.

[18] S. Tarzia et al., “Indoor Localization without Infras-

tructure using the Acoustic Background Spectrum,” ACM

MobiSys’11, Bethesda, MD, U.S.A., Jun 28–Jul 1, 2011.

[19] P. Lazik and A. Rowe, “Indoor pseudo-ranging of mo-

bile devices using ultrasonic chirps,” SenSys ’12 Proceed-

ings of the 10th ACM Conference on Embedded Network

Sensor Systems, Nov. 2012, pp. 99–112.
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