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ABSTRACT

Modeling of a room impulse response (RIR) is required in
many audio processing applications; however, this is chal-
lenging since room responses are usually long and complex
in practice and drastically vary as the source and microphone
locations change. In this paper, a subband multichannel
modeling method is proposed, which is computationally effi-
cient, precise, and robust against RIR variations. A dual-tree
complex wavelet packet transform is utilized to decompose
a multichannel RIR into aliasing-free subband signals, and
low order adaptive Kautz filters are designed to model sub-
band signals using the poles common to the RIR channels. A
least-squares algorithm is introduced to efficiently estimate
the common poles at each subband. Experimental results in-
dicate that the proposed method accurately models long room
responses, while exhibiting significant robustness against
room response variations caused by changing the source and
microphone locations.

Index Terms— Wavelet transform, Kautz filter, least-
squares approximation, room acoustics.

1. INTRODUCTION

A room impulse response (RIR) describes the sound propaga-
tion characteristics between a source and a microphone placed
inside a room. Accurate modeling of an RIR is essential in
many acoustic signal processing applications such as room
acoustic virtualization [1] and acoustic feedback cancellation
[2]. In practice, modeling of an RIR is challenging since (i) an
RIR can be tens of thousands taps long, requiring high order
filters for accurate representation, and (ii) an RIR drastically
changes with slight variations in the source and microphone
locations.

Several methods for modeling of an RIR have been pro-
posed. All-zero modeling [3, 4] is the simplest method. For
a room with a relatively long reverberation time, however, an
all-zero model requires a large number of parameters. Since
poles represent room resonances with fewer parameters than
zeros, a pole-zero method [4] provides a more compact model
of an RIR. However, pole-zero models may require nonlinear
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optimization, suffering from convergence to a local minima
[5]. An alternative to conventional modeling methods is the
Kautz filtering [6] which utilizes orthonormal basis functions
to provide a more precise model with fewer parameters.

In practice, due to the complex time-frequency structure
of a room response, a conventional modeling method or a
kautz filter may not accurately model the full audio frequency
range and temporal decay of a room response [6-9]. To al-
leviate this restriction, different subband modeling methods
have been proposed. A multirate system [7], the frequency
zooming ARMA model [8], and polyphase Kautz model [9]
have been shown to provide gentler performance as compared
to the fullband counterparts. These methods, however, do not
address the robustness against RIR variations. Models less
sensitive to RIR variations have been proposed in [10-12],
where the common acoustical poles of the room are utilized
to develop a pole-zero model [10, 11] or a model based on
orthonormal basis functions [12]. These models, however, do
not represent the room response over the full audio frequency
range and are limited to low frequency components of an RIR.

In this paper, we introduce a method for modeling of long
room responses. The proposed model exhibits high precision
and significant robustness against the RIR variations for the
full audio frequency range. Given a multichannel RIR, we
decompose the RIR into subband equivalent signals and de-
sign a low order adaptive Kautz filter at each subband before a
fullband signal is reconstructed. We utilize the dual-tree com-
plex wavelet packet transform [13, 14] to produce aliasing-
free subbands. We introduce a least-squares (LS) algorithm
for the efficient approximation of the poles common to the
RIR channels at each subband; common poles (CPs) enhance
the model robustness against the RIR variations. Estimated
poles are then fixed, and the model is validated with room
responses measured at source and microphone locations not
used for the approximation of the CPs. Experimental results
indicate that the proposed model provides a high precision
robust representation of long room responses by benefitting
from time-frequency decomposition and efficient approxima-
tion of CPs. In Section 2, we propose the subband multi-
channel RIR model. In Section 3, we validate the model with
experimental data. Conclusions are drawn in Section 4.

356978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



2. SUBBAND MULTICHANNEL RIR MODELING

A room response in the time domain can be divided into di-
rect sound, early reflections, and late reverberations [15]. Al-
ternatively, in the frequency domain, a room response can be
characterized by discrete low frequency modes and diffuse
overlapping modes [15, 16]. This complex time-frequency
structure motivates the development of a subband multichan-
nel RIR model. Since the wavelet oscillate locally, it requires
an order of magnitude fewer coefficients than the Fourier ba-
sis to approximate within the same error [13]. We use the
packet form of the discrete-time complex wavelet transform
(DT-CWT) [14] to produce aliasing-free subbands and per-
fect reconstruction. Aliasing-free subbands are essential since
aliasing causes erroneous results at the band edges [13].

2.1. Wavelet Decomposition

The DT-CWT consists of two wavelet transforms operating in
parallel on a given signal [13]. We denote the wavelet asso-
ciated with the first (second) wavelet filter bank (FB) as ψ(t)
(ψ′(t)). Wavelet ψ(t) is defined as

ψ(t) =
√

2
∑

n
hhp(n)φ(2t− n), (1)

where φ(t) =
√

2
∑

n hlp(n)φ(2t− n). Here, hlp(n) and
hhp(n) represent a discrete-time low-pass and a discrete-time
high-pass filter, respectively. Wavelet ψ′(t) is defined simi-
larly in terms of {h′lp(n), h′hp(n)}. For the ideal DT-CWT,
wavelet ψ′(t) is the Hilbert transform of wavelet ψ(t),

ψ′(t) = H{ψ(t)}. (2)

As shown in [13], [14], if h′lp(n) is the half-sample delayed
version of hlp(n), wavelets produced by DT-CWT satisfy (2).

To construct the DT-CWPT (the packet form of the DT-
CWT) [14], each subband should be repeatedly decomposed
using low-pass/high-pass perfect reconstruction filter banks
(PR FBs). The PR FBs should be chosen so that the re-
sponse of each branch of the second wavelet packet FB is
the discrete Hilbert transform of the corresponding branch of
the first wavelet packet FB. Hence, each subband of the DT-
CWPT will be analytic. Detailed properties in the context
of mathematical proofs are discussed in [13], [14]. The DT-
CWPT, obtained by iterating PR FBs on both low-pass and
high-pass outputs, provides a linear-band analysis, leading to
a high resolution over the entire audio frequency range.

2.2. Subband Kautz Filters

Kautz filters are a special class of fixed-pole IIR filters, de-
signed to produce orthonormal tap-output impulse responses
[6]. The orthonormalization process provides control on indi-
vidual resonances, enabling a Kautz filter to efficiently model
an audio response. A Kautz filter is defined by a set of stable
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Fig. 1. Kautz filter for N pairs of complex conjugate poles.

poles p = {pm}Nm=1 and a corresponding set of tap-output
weights. A common assumption in modeling of a real room
response is that the poles are real or complex conjugate [6].
For complex conjugate poles, a real Kautz filter formulation,
shown in Fig. 1, prevents dealing with complex internal sig-
nals and filter weights. Normalization terms are given by [6]

αm =
√

(1− ρm)(1 + ρm − γm)/2 (3)

βm =
√

(1− ρm)(1 + ρm + γm)/2, (4)

where ρm = |pm|2 and γm = −2<{pm}. As illustrated in
Fig. 1, the filter output is expressed as

y(n,p,w) = ϕT (p, n)w(n), (5)

with w(n) = [w1(n), . . . , w2N (n)]T and ϕ(p, n) = [ϕ1(n),
. . . , ϕ2N (n)]T . Due to the short length of the subband sig-
nals, a low order Kautz filter at each subband is sufficient;
furthermore, subbands are processed in parallel, enabling ef-
ficient computations. To enhance the robustness against room
response variations, we use poles which are common to the
RIRs measured at different source and microphone locations.

2.3. Least-Squares Approximation of common poles

Brandenstein and Unbehauen proposed an LS method, known
as the BU method, for the FIR-to-IIR filter conversion [17],
which produces unconditionally stable and optimal pole sets
for a desired IIR filter order [17]. Inspired by the BU method,
we propose an iterative LS algorithm that produces CPs at low
expense. We refer to this algorithm as the CPBU method.

2.3.1. Problem formulation

The j-th subband equivalent signal of the i-th channel of a
multichannel RTF, denoted as Hij(z) (i = 1, . . . ,M and j =
1, . . . , J), is an FIR transfer function of length L. The IIR
approximation of Hij(z) in the least-squares sense is the IIR
transfer function Gij(z)=

Nij(z)
Dij(z)

of order N (N < L) such
that

Eij = ||∆ij(z)||2 = ||Hij(z)−Gij(z)||2 (6)

is minimal, where || · ||2 denotes the l2-norm. To estimate
CPs, which are independent of the source and microphone
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locations, we defineD1,j(z)= · · ·=DM,j(z)=Dj(z), where

Dj(z)=

N∑
n=0

dnz
−n=1 + z−1

N−1∑
n=0

dn+1z
−n=1 + z−1D̄j(z).

(7)
Hence, approximating CPs in the least-squares sense means
that we need to determine N real coefficients dn (n =
1, . . . , N ) such that the l2-norm of the approximation error

Ej = [E1j , . . . , EMj ]
T (8)

is minimized. As the CPs must be stable, the rational transfer
function Gij(z) is required to be analytic in |z| ≥ 1. There-
fore, by applying the Walsh theorem [18], as discussed in
[17], the difference function ∆ij(z) can be rewritten as

∆ij(z) = z−1Aj(z)Rij(z), Aj(z) =
z−NDj(z

−1)

Dj(z)
, (9)

where Aj(z) is an allpass filter, and Rij(z) is an FIR trans-
fer function with length L and real coefficients rij,n (n =
0, · · ·, L− 1) which are computed through allpass filtering of
Xij(z) = z−LHij(z

−1) by Aj(z) as

Uij(z) =

∞∑
n=0

uij(n)z−n = z−LHij(z
−1)Aj(z), (10)

rij,L−1−n = uij(n) (n = 0, · · ·, L− 1). (11)

Using equations (6), (9), and (11), we have

E2
j=

M∑
i=1

E2
ij=

M∑
i=1

||∆ij ||22 =

M∑
i=1

L−1∑
n=0

r2ij,n=

M∑
i=1

L−1∑
n=0

u2ij(n).

(12)
Hence, least-squares approximation of the CPs is formu-
lated as approximating Dj(z) such that the energy of uj :=
[u1j , . . . ,uMj ]

T is minimal over the first L samples, where
uij = [uij(0), . . . , uij(L− 1)] (i = 1, . . . ,M).

2.3.2. Approximation algorithm

We define the digital filter

A
(k)
j (z) =

z−ND
(k)
j (z−1)

D
(k−1)
j (z)

(13)

that approaches an allpass if ||D(k)
j (z)−D(k−1)

j (z)||2→0 for

k→∞. Filtering Xij(z)=z−LHij(z
−1) by A(k)

j (z) leads to

U
(k)
ij (z) = A

(k)
j (z)Xij(z) = z−ND

(k)
j (z−1)X

(k)
ij (z), (14)

where X(k)
ij (z) =

z−LHij(z
−1)

D
(k−1)
j (z)

. Substituting (7) in (14) for

i = 1, . . . ,M leads to
X

(k)
1,j (z)z−(N−1)D̄

(k)
j (z−1)=U

(k)
1,j (z)−z−NX

(k)
1,j (z)

...
X

(k)
M,j(z)z−(N−1)D̄

(k)
j (z−1)=U

(k)
M,j(z)−z−NX

(k)
M,j(z).

(15)

Equating the coefficients of z0, z−1, . . . , z−(L−1) on both
sides of the equations in (15), we have

C
(k)
j d

(k)
j = u

(k)
j + b

(k)
j (16)

where

C
(k)
j = [C

(k)
1,j , . . . ,C

(k)
M,j ]

T , d
(k)
j = [d

(k)
N,j , · · ·, d

(k)
1,j ]T

b
(k)
j = [b

(k)
1,j , · · ·,b

(k)
M,j ]

T , u
(k)
j = [u

(k)
1,j , · · ·,u

(k)
M,j ]

T

b
(k)
ij = −[0, · · ·, 0, x(k)ij (0), · · ·, x(k)ij (L−N − 1)]

C
(k)
ij =


x
(k)
ij (0) 0 0 . . . 0

x
(k)
ij (1) x

(k)
ij (0) · · ·

. . .
...

...
...

...
. . .

...
x
(k)
ij (L−1) · · · · · · · · · x

(k)
ij (L−N)

. (17)

Solving C
(k)
j d

(k)
j = b

(k)
j in the LS sense, a vector d(k)

j

is obtained that minimizes the norm of u(k)
j = C

(k)
j d

(k)
j −

b
(k)
j . Hence, we have found D

(k)
j (z) that minimizes (12).

We repeat the procedure as listed in Algorithm 1, creating a
sequence of D(k)

j (z) polynomials. Roots of the D(k)
j (z) with

the minimum error in sequence give the CPs.

Algorithm 1 CPBU Algorithm
Input: Subband signals {Hij(z)}Mi=1, number of CPs (N)

1: D
(0)
j ← 1

2: for k = 1, 2, · · · ,K do
3: for all i do
4: Update X

(k)
ij (z)=z−LHij(z

−1)/D
(k−1)
j (z)

5: end for
6: Update C

(k)
j and b

(k)
j using X

(k)
ij (z) as in (17)

7: Solve C
(k)
j d

(k)
j = b

(k)
j in the least-squares sense

8: Store d
(k)
j and u

(k)
j

9: end for
10: Choose dj corresponding to the uj with the minimum norm
11: Create the Dj(z) polynomial utilizing elements of dj as in (7)
12: Compute roots p1,j , . . . , pN,j of polynomial Dj(z)

Output: The p1,j , . . . , pN,j represent the CPs

2.4. Filter Weights Adaptation

Once the CPs are found from the measured data, the filter
weights w(n) can be adaptively computed by a standard al-
gorithm such as Kalman filter, recursive least squares, and
normalized least mean squares (NLMS) algorithm [19], [20].
For simplicity, we choose the NLMS with the adaptation rule

ŵ(n+ 1)=ŵ(n)+
µ

||ϕ(n, .)||2
ϕ(n, .)(y(n)−ϕT (n, .)ŵ(n))

(18)
where µ ∈ (0, 2) is a gain. Linearity in filter weights leads to
global convergence under the same conditions as for an FIR
filter with the same number of parameters, and orthonormality
assures faster convergence of the adaptation algorithm [20].
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Fig. 2. Error of the SBCP-Kautz and CP-Kautz methods at
different locations of the source and microphone.

3. EXPERIMENTAL RESULTS

Experimental results are presented to demonstrate the perfor-
mance of the proposed subband multichannel Kautz method
developed using the CPs (SBCP-Kautz). Experiments aim
to evaluate the precision and robustness of the SBCP-Kautz
method in both time and frequency domains in comparison
to the fullband counterpart (CP-Kautz). To study the perfor-
mance of the SBCP-Kautz method in modeling of the i-th
channel of a multichannel RIR, the normalized mean square
error (NMSE) is defined as

NMSEi = 20 log 10
||hi − ĥi||2
||hi||2

(dB), (19)

where hi and ĥi denote the measured and modeled RIRs.
Experiments are performed using the MARDY database

[21]. The RIRs were measured from three sources (placed
at left (L), center (C), and right (R)) to a linear array of mi-
crophones placed at three different locations in a room with
reflective panels. The source-to-microphone distances varied
between 1 m and 3 m (1 m increments). The T60 is 447 ms.
Each RIR has a length of 65536 samples with sample rate
fs = 48 KHz. The SBCP-Kautz with 64 subbands is utilized,
where each subband is modeled with 16 CP pairs (32-nd order
filter). The CPBU algorithm (10 iterations) is used to estimate
CPs from training data comprised of 7 RIRs measured from
the source L to the microphone array placed at a 2 m from the
source. The CPs are then fixed, and the SBCP-Kautz is ap-
plied to model room responses not used in the training step.

As illustrated in Fig. 2, the SBCP-Kautz method achieves
nearly perfect modeling (NMSE ≈−80 dB), independent of
the source and microphone locations. To provide a compar-
ison, the CP-Kautz with a 64-th order filter was utilized to
model the same room responses. The CP-Kutz is computa-
tionaly expensive and gives much lower accuracy (NMSE ≈
−11 to -17 dB) which, depending on the source and micro-
phone locations, varies by more than 50%. Higher orders of
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Fig. 3. Frequency domain performance of the (a) SBCP-
Kautz method and (b) CP-Kautz method.

a filter slightly enhance the accuracy of the CP-Kautz at the
expense of highly increased computational load.

To evaluate the performance of the SBCP-Kautz method
in the frequency domain, an arbitrary channel from the de-
scribed databased is considered. Fig. 3 shows the channel
frequency response and corresponding modeled response, fol-
lowed by the error signal. The SBCP-Kautz models the room
response over the full audio frequency range with almost no
degradation, while benefiting from the low order filters.

4. CONCLUAIONS

A method for modeling of long room responses has been
introduced, where the RIR is decomposed into aliasing-free
subband signals and a low order adaptive Kautz filter is
designed to model each subband using CPs. A least-squares
algorithm is introduced to efficiently estimate the CPs. Exper-
imental results indicate that the proposed method (i) precisely
models RIRs over the entire audio frequency range, and (ii) is
robust against RIR variations. Computational efficiencies af-
forded by employing the subband method make it practical to
implement the proposed method on modest signal processing
platforms.
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