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ABSTRACT

This paper presents an experimental study on a novel technique to
blindly estimate the directional properties of room reflections using
a spherical microphone array. The algorithm is developed based on
a spatial correlation model formulated in the spherical harmonics
domain. This model expresses the cross correlation matrix of the
recorded soundfield coefficients in terms of direct sound and reflec-
tions. The directional gain of the reflected path is estimated from
the above model, which provides information on the DOAs of dom-
inant wall reflections. The practical feasibility of the proposed algo-
rithm is evaluated using a subset of the speech corpus from the ACE
(Acoustic Characterization of Environments) Challenge.

1. INTRODUCTION

Soundfield analysis of reverberant enclosures is a topic of interest
because it provides knowledge on how the soundfield varies in terms
of direction and time. Knowledge of the directions of arrival (DOAs)
of dominant wall reflections is particularly desirable in areas such
as auditorium/room assessment [1–3], inference of room geome-
try [4–7], dereverberation [8], determination of psychoacoustic in-
dicators [9] and validation of diffuse field assumption [10]. This
paper presents the results from the use of a spherical microphone
array to blindly estimate the DOAs of dominant wall reflections in
actual rooms.

Initially, soundfield analysis inside rooms was purely based on
room impulse response (RIR) measurements from a single micro-
phone [11]. Such measurements only yields omnidirectional pres-
sure, thus the spatial information of the incident reflections are often
lost. However, by studying the times of arrival and the room ge-
ometry, it is occasionally possible to identify the reflecting surfaces
and DOAs. To overcome the shortcomings of a single microphone
recording, multiple microphone arrays were later utilized in a vari-
ety of ways to derive the directional properties of room reverbera-
tion [5, 12, 13]. Some of these microphone array solutions obtained
directional information using directional microphones, beamform-
ing [14, 15] and geometric approaches [7].

Recently, the spherical microphone array was introduced for
three dimensional (3D) scene analysis inside rooms [16, 17]. In
particular, the measurements from a spherical microphone array can
be processed to derive the spherical harmonic components or eigen-
beams, which characterizes the spatial properties of the soundfield.
Gover et al. [18] used a 32−channel spherical microphone array to

∗This work is supported by Australian Research Council (ARC) Discov-
ery Projects funding scheme (project no. DP140103412).

derive the Directional properties of room reverberation via beam-
forming, and Park and Rafaely [2] applied planewave decomposition
using a virtual 98−element spherical array to perform soundfield
analysis in an auditorium. Rafaely et al. [3] also proposed a dual co-
centered open sphere microphone array design for the above method,
which provided high resolution due to the large aperture size. The
main limitation of these approaches is the high number of micro-
phones required. More recently, with the introduction of portable
commercial spherical microphone arrays such as the EigenmikeTM,
there has been an increased interest in utilizing them for reverberant
room analysis. In [19] Sun et al. studied the accuracy of optimum
array processing methods (steered beamforming and subspace meth-
ods) for localization of an unknown source and several dominant
room reflections from a single Eigenmike measurement.

In this paper, we propose a novel method to estimate the direc-
tional properties of room reflections using a multi-channel coherence
estimator [20] based on a spatial correlation model formulated in the
spherical harmonics domain. The spatial correlation model is for-
mulated through a spatial correlation matrix containing the spherical
harmonic coefficients/eigenbeams derived from a spherical micro-
phone array1. The main advantage of this method is its capability
to estimate additional information such as the Direct to Reverberant
Ration (DRR) as given in [23].

2. PROBLEM FORMULATION

We first consider a spherical array of Q omnidirectional micro-
phones recording the incident soundfield caused by a single source
inside the room enclosure of interest. The observed soundfield at
the qth (q = 1, 2, · · · , Q) microphone can be expressed in the
time-frequency domain as

P (xq, k, t) = S(k, t)H(xq,yo, k) (1)

where k = 2πf/c is the wavenumber with f and c representing the
frequency in Hz and speed of sound in ms−1 respectively, S(k, t) is
the Short Time Fourier transform of the source signal, t is the tem-
poral frame index, and H(xq,yo, k) is the room transfer function
(RTF) between the source location yo = (r0, θo, φ0) and the re-
ceiver location xq = (r, θq, φq). Note that from now on, we omit
the time dependency (t) for notational convenience. In a reverberant
enclosure, P (xq, k) would contain the direct path from the source as
well as the room response. This decomposition can be reflected in
the RTF as

H(xq,yo, k) = Hdir(xq,yo, k) +Hrvb(xq,yo, k) (2)

1Or other alternative structures as given in [21, 22]
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where Hdir(·) and Hrvb(·) represent the direct and reflected com-
ponents of the room impulse response, respectively. Note that, for
convenience, we include both early and late reflections in Hrvb(·).

Assuming the aperture size of the microphone array is suffi-
ciently small compared to the distance to the source2, the direct path
of (2) can be considered to be a single plane wave of the form

Hdir(xq,yo, k) = GD(k)eikŷo·xq (3)

where GD(k) denotes the direct path gain and ŷo denotes the unit
vector along the incoming direction. Similarly, the reflected path
from all directions can be given by

Hrvb(xq,yo, k) =
∫
ŷ

GR(k, ŷ)eikŷ·xqdŷ (4)

whereGR(k, ŷ) is the gain of the reflected plane wave arriving from
the direction ŷ = (1, θ, φ) for θ ∈ [0 : π] and φ ∈ [0 : 2π) and∫
ŷ
dŷ =

∫ 2π

0

∫ π
0
sin θdθdφ. From (1), (2), (3) and (4), we re-write

P (xq, k) as

P (xq, k) = S(k)
(
GD(k)eikŷo·xq +

∫
ŷ

GR(k, ŷ)eikŷ·xqdŷ
)
. (5)

By observing the above derivation, the total reflected field power PR
at the observation point is

PR = E
{
|S(k)|2

}∫
ŷ

E
{
|GR(k, ŷ)|2

}
dŷ (6)

where E{·} denotes the expectation operator. Our objective is to es-
timate the directional properties ofPR, which requires the estimation
of the spherical function E

{
|GR(k, ŷ)|2

}
in all look directions ŷ.

To simplify this, we decompose the above function in terms of a set
of spatial basis functions called the spherical harmonic functions3,
such that a limited number of coefficients are capable of sufficiently
representing the continuous function of interest. This decomposition
takes the form of

E
{
|GR(k, ŷ)|2

}
=

∞∑
v=0

v∑
u=−v

γvu(k)Yvu(ŷ), (7)

where Yvu(·) represent the vth order uth mode spherical harmonic
function and γvu(k) is the corresponding spherical harmonic coeffi-
cient. The main task at hand is to estimate these coefficients, which
describe the reflected power in any arbitrary look direction in the 3D
space.

3. ESTIMATION OF THE DIRECTIONAL PROPERTIES
OF ROOM REVERBERATION

In this section, we utilize the spherical harmonic decomposition of
soundfields to formulate a spatial correlation matrix, which leads to
the estimation of the desired parameters γvu(k).

2When the aperture size is much smaller than the radiating wavelength, it
is said to be a point source, which radiates power equally in all directions with
a spherical radiation pattern. At great distances with respect to wavelength
from the source, the spherically spreading waves can be regarded as plane
waves forming a far-field. A common rule of thumb is far-field sources are
located at a distance of r > 2L2/λ where L is the aperture radius and λ is
the operating wavelength.

3Spherical harmonics are a set of orthonormal spatial basis functions,
which can be used to represent functions defined over a sphere. Thus, any
spherical function f(θ, φ) may be expanded as a linear combination of these
basis functions.

3.1. Spatial correlation in the spherical harmonic domain

Formulation of a spatial correlation model requires the soundfield of
interest to be represented in the spatial domain. For this purpose, we
derive a similar relationship to (5) in terms of the spherical harmonic
decomposition of functions on the sphere. The left-hand-side of (5)
is the incident soundfield over a spherical surface outlined by the
microphone array, and therefore can be expressed in a similar form
to (7) as [24]

P (xq, k) =
∞∑
n=0

n∑
m=−n

αnm(k)bn(kr)︸ ︷︷ ︸
anm(k)

Ynm(θq, φq). (8)

where anm(k) are the corresponding spherical harmonic coeffi-
cients, which are further simplified by anm(k) , αnm(k)bn(kr) for
the observed incident soundfield based on the assumption that it is a
homogeneous incident soundfield [16, 25] and

bn(kr) =

{
jn(kr) for an open array

jn(kr)− j′n(kr)
h′
n(kr)hn(kr) for a rigid array

(9)

with jn(·) and hn(·) denoting the spherical Bessel and Hankel func-
tions of order n respectively and r denoting the radius of the spher-
ical microphone array (e.g., Eigenmike). Note that αnm(k), the in-
cident soundfield coefficients, can be derived up to order N = dkre
using the microphone array recordings P (xq, k) for q = 1, 2 · · ·Q
[16, 25].

Similarly, the spherical functions in the right-hand-side of (5)
can be decomposed in terms of spherical harmonics. These include
the reverberant gain function GR(k, ŷ) distributed over all possible
look directions, and the plane wave soundfields eikŷo·xq and eikŷ·xq ,
as observed by the spherical microphone array. We write GR(k, ŷ)
in terms of

GR(k, ŷ) =
∞∑
n=0

n∑
m=−n

βnm(k)Ynm(θ, φ). (10)

where βnm(k) are the respective spherical harmonic coefficients,
and eikŷ·xq by

eikŷ·xq =

∞∑
n=0

n∑
m=−n

inY ∗nm(θ, φ)jn(kr)︸ ︷︷ ︸
dnm(k)

Ynm(θq, φq). (11)

where the spherical harmonic coefficients are given by by dnm(k) =
inY ∗nm(θ, φ)jn(kr) for a given planewave incident direction ŷ [25].

By substituting (8), (10) and (11) in (5), we derive a modal do-
main relationship analogous to (5) as

αnm(k) = S(k)in
(
GD(k)Y ∗nm(θ0, φ0) + βnm(k)

)
. (12)

where the soundfield coefficients recorded by the microphone array
are now represented in terms of their respective direct and reflected
components. This relationship serves as the basis for the spatial cor-
relation matrix formulated below. Based on (12), the cross correla-
tion between αnm and αn′m′ is

E
{
αnm(k)α∗n′m′(k)

}
= in(−i)n

′
E
{
|S(k)|2

}
(
E
{
|GD(k)|2

}
Y ∗nm(θ0, φ0)Yn′m′(θ0, φ0)

+ E
{
βnm(k)β∗n′m′(k)

})
.
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(13)

When deriving the above result, the cross correlation between the
direct path gain and reverberant path gain coefficients was consid-
ered to be negligible (the reflection gain from reflective surfaces are
independent from the direct path gain).

Assuming that the reflection gains from different incoming di-
rections are uncorrelated, the term E

{
βnm(k)β∗n′m′(k)

}
of the

above equation can be simplified using (10) and (7) as

E
{
βnm(k)β∗n′m′(k)

}
=

∞∑
v=0

v∑
u=−v

γvu(k)

( (2v + 1)(2n+ 1)(2n′ + 1)

4π

)1/2
W1W2

(14)

where W1 and W2 are Wigner coefficients [26], representing

W1 =

(
v n n′

0 0 0

)
and (15)

W2 =

(
v n n′

u m −m′
)
. (16)

By substituting (14) in (13) we arrive at

E
{
αnm(k)α∗n′m′(k)

}
= in(−i)n

′
E{|S(k)|2}

(
E{|GD(k)|2}

Y ∗nm(θ0, φ0)Yn′m′(θ0, φ0) +
∑
v,u

γvu(k)

( (2v + 1)(2n+ 1)(2n′ + 1)

4π

)1/2
W1W2

)
(17)

The above result provides a comprehensive expression for the spa-
tial correlation between two spherical harmonic coefficients of an
enclosed soundfield, in terms of its direct path component GD(k)
and reverberant path components γvu(k). It can be utilized in any
room acoustic application that seeks the separation of direct and re-
verberant soundfields. In the following section, we define a spatial
correlation matrix based on the above result, which leads us to the
estimation of the desired coefficients γvu(k) .

3.2. Spatial Correlation matrix

We define the modal domain spatial correlation matrixR(k) by

R(k) , E
{
α(k)αH(k)

}
(18)

where α(k) =
[
α00(k) α1−1(k) .. αNN (k)

]T
1×(N+1)2.

By substituting (17) into (18), we obtain

R(k) = PD


b0000 b001−1 · · · b00NN
b1−100 b1−11−1 · · · b1−1NN

...
...

...
...

bNN00 bNN1−1 · · · bNNNN

+

E
{
|S(k)|2

}
d0000 d001−1 .. d00NN

d1−100 d1−11−1 .. d1−1NN

...
...

...
...

dNN00 dNN1−1 .. dNNNN



γ00
γ1−1

...
γV V



(19)

where PD = E
{
|S(k)|2|GD(k, ŷ)|2

}
is the direct path power, V is

the truncation limit of (7),

bnmn′m′ = Y ∗nm(θ0, φ0)Yn′m′(θ0, φ0),

dnmnm′ = [dnmnm′00 dnmnm′1−1 dnmnm′10 dnmnm′11 · · ·
dnmnm′V V ](N+1)2(V+1)2×1, and

dnmnm′vu =
( (2v + 1)(2n+ 1)(2n′ + 1)

4π

)1/2
W1W2.

Since the spherical microphone array characteristics are initially
known, α(k) in (19) can be calculated following the method given
in [16, 17]. If the direction of arrival of the source is known or esti-
mated, then bnmn′m′ can also be calculated. The terms dnmnm′ are
composed of known functions. Thus, we can estimate the desired
parameters γvu(k) by solving the following set of equations, which
were derived by reformulating (19) as



R0000

R001−1

...
R00NN

R1−100

...
RNNNN


︸ ︷︷ ︸

r̃(k)

≈



b0000 d000000 · · · d0000V V
b000−1 d000−100 · · · d000−1V V

...
...

...
...

b00NN d00NN00 · · · d00NNV V
b1−100 d1−10000 · · · d1−100−1V V

...
...

...
...

bNNNN dNNNN00 · · · dNNNNV V


︸ ︷︷ ︸

B(k)

×



PD

E
{
|S(k)|2

}
γ00

E
{
|S(k)|2

}
γ1−1

...
E
{
|S(k)|2

}
γV V


︸ ︷︷ ︸

p̂(k)

.

(20)

Here, Rnmn′m′ in r̃(k) denotes the (n2 + n +m + 1)th row and
(n′2 + n′ + m′ + 1)th column components of R(k), which can
be calculated from the spherical microphone measurements. The
desired parameters γvu(k) can be derived by solving (20) using the
least-squares method

p̂(k) = B†(k)r̃(k) (21)

where [·]† and [̂·] represents the Pseudo-inverse and estimated value,
respectively. To avoid an underdetermined system, the condition
(N + 1)4 > (V + 1)2 + 1 has to be satisfied, thus the maximum

solvable order of (7) is V =
⌊
((N + 1)4 − 1)1/2

⌋
. Once γvu(k) is

derived, the directional properties of the reflected field can be stud-
ied by analyzing (6) for each look direction ŷ. Note that, the term
PD (direct path power) is also derived as a by product of solving
(20). In [23], the authors provide a comprehensive study on the use
of this result to estimate the DRR of a given room.

353



Azimuth angle
0 π/2 π 3π/2 2π

R
e
fl
e
c
te

d
 f
ie

ld
 p

o
w

e
r

-20

-10

0

10

20

30
Position 1

Position 2

Fig. 1. Estimated reflected field directivity in a Lecture room for two
receiver (eigenmike) positions.

Azimuth angle

0 π/2 π 3π/2 2π

R
e
fl
e
c
te

d
 f
ie

ld
 p

o
w

e
r

-5

0

5

10
Position 1

Position 2

Fig. 2. Estimated reflected field directivity in a Meeting room for
two receiver (eigenmike) positions.

4. EXPERIMENTAL RESULTS

We evaluate the proposed method with real acoustic data. We used
the ACE Challenge database [27, 28] to retrieve a large corpus of
multi-channel recordings spanned over a variety of rooms, speakers
and environmental conditions. The ACE Challenge database4 is a
recently developed database to stimulate research in non-intrusive
acoustic parameter estimation in realistic environments including
noise and reverberation. The results and analysis provided in this pa-
per are based on a subset of the above corpus, which were recorded
using an Eigenmike. Included in this subset are 32 channel noisy
reverberant speech recordings obtained in 2 rectangular rooms at 2
different Eigenmike positions per room (near and far from the source
position) for 5 male talkers and 5 female talkers, each uttering 5 dif-
ferent English phrases, in the presence of 3 types of noise recordings
(babble, fan, ambient) at 3 different SNR levels (−1 dB, 12 dB and
18 dB). The reflected field power was estimated up to order V = 6
(7).

In the first example, we consider a lecture room of size (6.93×
9.73×3) m. The source and eigenmike are both located in the same
height, therefore we only plot the reflected field directivity in the hor-
izontal plane across the eigenmike. Figure 1 shows the directional
properties of the reflected field power for two different receiver loca-
tions. The results are averaged over the frequency band 2000−3000
Hz for 5 male talkers and 5 female talkers, each uttering 5 different
English phrases, each in the presence of 3 types of noise recordings
(babble, fan, ambient) with a SNR of 18 dB. Note that the reflected
field power appears negative at times, which is due to the truncation
of the infinite summation in (7). The estimated reflected power for a
given direction is thus, only a fraction of the real power. However,
for a sufficiently high order V , the truncation effect on the result-
ing directional pattern is expected to be minimal. It is observed
in Fig. 1, that the reflected field power present at the spherical mi-
crophone array is directional with distinct peaks occurring at π/2
intervals. These peaks clearly represent the wall reflections, and the

4Available at www.ace-challenge.org
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Fig. 3. Estimated reflected field directivity in a lecture room for
different noise types at 18 dB SNR.
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Fig. 4. Estimated reflected field directivity in a lecture room for
different noise levels.

height of each peak suggests the reflective properties of each wall.
For different microphone positions, the directional pattern appears
to remain similar, with only a fixed rotation according to the micro-
phone movement.

In the second example, we consider a meeting room of size
(6.61×5.11×2.95) m, where the source and eigenmike are located
in the same horizontal plane. Figure 2 shows the resulting directional
properties averaged over the frequency band 2000 − 3000 Hz for 5
male talkers and 5 female talkers, each uttering 5 different English
phrases, each in the presence of 3 types of noise recordings (babble,
fan, ambient) with a SNR of 18 dB. Similar to the previous results,
the directional pattern shows clear peaks at π/2 intervals represent-
ing the room walls. When the microphone position is changed from
Position 1 to Position 2, there appears a slight increase in the height
of the second peak, which is due to the microphone moving towards
that particular wall.

In the next two examples, we observe the robustness of the pro-
posed estimation method in the presence of noise. In Fig. 3, we show
the estimated reflected field directivity in a lecture room for different
noise types at 18 dB SNR. In Fig. 4, we show the estimated reflected
field directivity averaged over all 3 noise types at different SNR lev-
els. From Fig. 3 it is apparent that the the estimation method is robust
for different noise types, however, from Fig. 4, it appears that the the
peak strength of directivity degrades with decreasing SNR. This is
due to the noise power dominating the reflected field power.

5. CONCLUSION

In this paper, we presented a blind estimation algorithm that utilizes
recordings from a spherical microphone to estimate the directional
properties of the reflected soundfield. Based on experimental results
obtained through real acoustic data, it was shown that the proposed
method is capable of clearly recognizing the dominant reflective di-
rections, which is a promising tool for a plethora of applications that
require prior knowledge of the reflection characteristics for a given
room.
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