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ABSTRACT

While speech quality and intelligibility prediction methods for

normal-hearing and hearing-impaired listeners have found a lot of

attention as a cost-saving complement to listening tests, analogous

procedures for music signals are still rare. In this paper a method is

proposed for predicting perceptual ratings of music as obtained by

cochlear implant (CI) listeners. For this purpose a listening test with

CI listeners was conducted, who were asked to provide their ratings

for music excerpts on different scales. It is shown that principal

component regression (PCR) is a suitable tool to model and accu-

rately predict the median ratings of the CI listeners using timbre and

pitch related signal features as predictor variables. These features

describe signal characteristics such as high-frequency energy, spec-

tral bandwidth and roughness. The proposed prediction model is

a first step towards an instrumental evaluation procedure for music

processing algorithms in hearing devices.

Index Terms— Music, cochlear implants, principal component

analysis, regression, predictive models

1. INTRODUCTION

Cochlear implants (CI) restore the hearing ability of profoundly

hearing-impaired or deaf people via an array of electrodes in the

cochlea, which stimulate the auditory nerve using trains of signal-

controlled electrical pulses. However, since the spectral resolution

of the encoded acoustic signals is poor, CI listeners are not able to

achieve the same degree of frequency selectivity as normal-hearing

(NH) listeners. This leads to a distorted perception of pitch and

timbre, whereas rhythmic information can generally be recognized

well [1, 2, 3]. To improve the quality of music transmission in the

presence of cochlear hearing loss, music preprocessing schemes

have been proposed recently, which highlight vocals and percus-

sive elements in popular music based on a harmonic/percussive

sound separation [4, 5] or reduce the spectral complexity of classical

chamber music using dimensionality reduction techniques [6].

In view of the current development of music preprocessing

schemes for CIs, evaluation methods are required which can predict

the perceived music quality in CI listeners and thus complement

time-consuming listening tests. Frequently used measures to assess

speech enhancement algorithms include the signal-to-noise ratio

(SNR), the signal-to-distortion ratio (SDR), the signal-to-inference

ratio (SIR), and the signal-to-artifacts ratio (SAR) [7], which ac-

count for different kinds of signal improvements or distortions.
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Other measures are based on data obtained from listening tests

or auditory models and thus are capable of predicting speech and

audio quality more precisely, e.g. the perceptual evaluation of

speech quality (PESQ) [8], PEMO-Q [9], or the perceptual objec-

tive listening quality assessment (POLQA) [10]. Methods which

estimate the amount of speech intelligibility are, for instance, the

short-time objective intelligibility (STOI) measure [11] or measures

based on mutual information [12]. Furthermore, a feature-based

prediction model of noise annoyance for hearing-impaired listeners

was proposed in [13]. In contrast, music-related evaluation metrics

for signal enhancement algorithms in hearing devices have only

gained prominence recently. In [14] a measure was proposed which

predicts the sound quality of music after being processed by an

adaptive feedback canceler in a hearing aid. In [15] a metric was

introduced which uses changes in envelope modulation, temporal

fine structure, and long-term spectral shape to predict music qual-

ity for NH and hearing-impaired listeners. Furthermore, in [16] a

method was proposed which estimates musically relevant properties

such as note onsets times, pitch, and music instruments from the

output of an auditory model which may also include hearing im-

pairments. However, these metrics are designed to evaluate hearing

aid algorithms and do not take electric hearing into account. In this

work we therefore present an approach for predicting music quality

ratings obtained from CI listeners. The method is based on a linear

regression model which uses acoustic signal features related to pitch

and timbre cues to predict the music quality ratings.

This paper is organized as follows. In Section 2 we describe

details about a listening test we conducted with CI listeners. The

results obtained in the listening test are analyzed and discussed in

Section 3. Using signal-based features describing timbre and pitch

characteristics of music, a linear regression model is derived in Sec-

tion 4 which predicts the median ratings among the CI listeners. The

work is concluded in Section 5.

2. LISTENING TEST

2.1. Test participants

Eleven CI listeners (age: 54.1 ± 15.0 years) participated in the lis-

tening test. Details about the CI listeners are summarized in Table 1.

All listeners were profoundly hearing-impaired on both ears. Except

for listener CI-09, all participants used unilateral or bilateral MED-

EL implants with the FSP/FS4 or CIS coding strategies. If a hearing

aid (HA) was used additionally, the participants were requested to

turn it off during the test as we confined our investigation to music

perception through electric hearing. At the time of the listening test
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Table 1. Information about CI listeners who participated in the listening test. All age-related details are counted in years.

CI-01 CI-02 CI-03 CI-04 CI-05 CI-06 CI-07 CI-08 CI-09 CI-10 CI-11

Age 73 53 48 55 73 55 42 65 50 61 20
Age at HI diagnosis 53 41 38 48 45 - 50 37 20 3 5 36 1

Age at CI implantation 72 52 46 50 71 48 41 62 40 59 4

Hearing device (left) CI HA HA - - HA - CI CI CI HA
Hearing device (right) CI CI CI CI CI CI CI CI CI HA CI

CI brand MED-EL MED-EL MED-EL MED-EL MED-EL MED-EL MED-EL MED-EL Cochlear MED-EL MED-EL
Speech processor (left) Opus2 - - - - - - Opus2 CP910 Opus2 -

Speech processor (right) Opus2 Opus2 Opus2 Opus2 Opus2 Opus2 Opus2 Opus2 CP910 - Opus2
Coding strategy FSP FS4 FS4 FSP FSP/FS4 FSP FS4 FS4 ACE FSP CIS

the participants had been accustomed to the CI for at least one year

and were able to understand speech in quiet environments. Note,

that listeners CI-08, CI-09, and CI-11 were diagnosed with a pro-

found hearing loss during infancy.

2.2. Selection of music stimuli

For our listening test we selected 12 music excerpts of stereo CD

recordings, which similarly as in studies by [17, 18] encompassed

different harmonic complexity levels ranging from melodies played

by single instruments (electric bass, cello, brass, acoustics/electric

guitar, piano, woodwind, saxophone, bagpipe) to orchestral music

(strings). The passages had a duration of 7s to 15s and included

self-contained melody lines with a fixed number of instruments, a

constant rhythm, and a uniform style of playing, respectively. Since

music perception of CI listeners is facilitated by means of rhythmic

cues [2], the set of stimuli also varied in terms of the degree of clearly

accentuated note onsets. Furthermore, as high-pitched notes are of-

ten perceived as more scattered, i.e. noisy, than low-pitched notes

[19], the excerpts also differed in terms of their pitch characteris-

tics. Percussions and vocals were not considered to narrow down the

focus in this investigation. Obviously, a higher number of stimuli

would provide a higher number of ratings and hence more informa-

tion on how CI listeners perceive music. However, since we were

interested in obtaining ratings on several different scales, a trade-off

between the number of the stimuli and the cognitive load for the CI

users during the test had to be considered.

2.3. Rating scales and test setup

The participants were asked to rate the stimuli on 9 continuous bipo-

lar ordinal scales which described contrary pairs of sound properties

or attitudes towards the stimuli. We used the word pairs ’dull vs.

sharp’, ’scattered vs. compact’, and ’empty vs. full’ which were

found to describe 88% of timbre variance in [19]. These timbre de-

scriptions were amended by the word pairs ’blurred vs. distinct’,

’distorted vs. clean’, ’artificial vs. natural’, ’unpleasant vs. pleas-

ant’, ’hard to follow vs. easy to follow’, and ’complex vs. simple’.

Similar scales were used for questionnaires with CI users in [20] and

[21]. Note, that these scales reflect the degree of music acceptance,

where the first word of the word pair can be associated with a neg-

ative attitude towards a music piece. In addition, the participants

were asked to rate the sound quality on a scale which measures a

continuous version of the mean opinion score (MOS).

All scales except for the MOS scale were labeled with the at-

tributes ’slightly’, ’quite’, and ’extreme’ at equidistant scale posi-

tions towards each direction, which were represented numerically by

±1, ±2, and ±3, respectively. Note, that negative numbers pointed

towards the first word of the word pair. The marks were comple-

mented by a neutral level with its numerical representation 0. On the

MOS scale distinct marks corresponding to a bad, poor, fair, good,

and an excellent sound quality were provided along with their re-

spective numerical representations 1, 2, 3, 4, and 5. In order to

encourage the participants to consider the whole range of the rat-

ing scale, the slider bars were extended at both ends as suggested in

[22]. However, the ratings were confined by the values ±3 for the

first nine scales and by the values 1 and 5 for the sound quality scale.

The stimuli were presented in an audiometric booth via GEN-

ELEC 2029B loudspeakers which were positioned in a stereo setup

one meter in front of the participants. The participating CI listeners

provided their ratings by using slider bars in a graphical user inter-

face. Before starting the actual test session the participants were

requested to listen to two representative stimuli in order to set the

volume to a comfortable level. Furthermore, they familiarized them-

selves with the graphical user interface and the test procedure by a

training in which they were presented two additional stimuli. Dur-

ing the test there were no repeated trials, i.e. each stimulus was rated

only once on each scale. However, the CI listeners were allowed to

listen to the stimuli as often as desired while setting the slider bars.

The total duration of the test amounted to approximately 30 to 45

minutes.

3. TEST RESULTS

In Figure 1 the aggregated CI listener ratings are visualized sepa-

rately for each stimulus and each scale by means of boxplots. In

addition to the scale names the figure provides a numbering from 1

to 10. Note, that only the ratings of the postlingually deafened lis-

teners CI-01 to CI-10 are included in the boxplots. The ratings of

listener CI-11 who was implanted due to a prelingual deafness are

shown by black squares. The results show that in most cases listener

CI-11 assigned higher ratings to the stimuli than the other CI listen-

ers, which points towards a higher degree of music preference. This

can be attributed to the prelingual stage of implantation which can

facilitate speech understanding and increase the enjoyment of music

with a CI [23, 24].

For the other listeners we observe that the ratings often exhibit

a large variance, which is due to the strongly subjective nature of

rating music. In addition, the presence of a hearing loss is likely to

increase the rating variability [17]. Nevertheless, in particular stim-

uli 4, 5, and 11 are perceived as more scattered, blurred, distorted,

artificial, unpleasant, difficult to follow and complex. These stimuli

are played by electric guitars with delay and distortion effects (stim-

uli 4 and 11) and a bagpipe (stimulus 5), respectively. In contrast,

stimuli 1 and 6 exhibit ratings which tend towards the opposite ends

of the scales. These stimuli are played by an electric bass and acous-

tic guitars, respectively, which are characterized by accentuated note

onsets or a pronounced rhythm.

To find scales for which the listeners were able to perceive subtle

differences between the considered stimuli, we performed a scale-

wise analysis of variance (ANOVA) of the ratings at significance
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Fig. 1. Boxplots of CI participant ratings vs. stimulus index per scale. The boxplots only include ratings of participants CI-01 to CI-10. The

ratings of participant CI-11 (implanted due to prelingual deafness) are depicted by black squares.

Table 2. Numbers of scale-wise significant rating differences for

stimulus pairs. In total there were 66 possible pairs.

Scale index 1 2 3 4 5 6 7 8 9 10

# sign. different ratings - 6 1 10 10 7 5 5 6 -

level α = 0.05. It resulted in nonsignificant differences between

stimuli ratings for scale 1 (dull vs. sharp) (p = 0.459). Signifi-

cant differences were found for scale 3 (empty vs. full) (p = 0.01)

and scale 10 (sound quality) (p = 0.02), respectively. For the re-

maining scales the test revealed highly significant rating differences

(p < 0.001). To identify pairs of stimuli with significant rating dif-

ferences, a Tukey-Kramer post-hoc test was applied to the ratings on

scales 2 to 10, respectively (with α = 0.05). The quantity of pairs

with significantly different ratings are listed in Table 2. Note, that

in total there were 66 possible pairs. Obviously, the highest num-

ber of significantly different ratings was obtained on scales 4 and 5.

Thus, we can argue that the CI listeners were able to perceive subtle

nuances between different stimuli on these scales. In contrast, on

scales 1 and 10 the listeners did not provide significantly different

ratings for pairs of different stimuli.

4. PREDICTION OF MUSIC RATINGS

Instead of predicting the ratings of individual CI listeners we con-

sidered median ratings across the postlingually implanted listeners

CI-01 to CI-10. This reduces variations due to external conditions.

Listener CI-11 was not considered since electric hearing obviously

does not degrade his music perception. Further, we only took the

preference-related scales 4 to 10 into account. However, scale 10

was excluded since ratings did not show significant differences for

pairs of stimuli.

4.1. Feature extraction

The music signals were resampled at fs = 16 kHz, converted to

mono, and segmented into overlapping frames using a frame length

of N = 512 and a frame shift of R = 256. Then, short-term low-

level features were extracted from the 12 stimuli using the MIR tool-

box [25]. Since studies on CI hearing suggest that timbre and pitch

properties are the main influential factors for degraded music per-

ception as opposed to rhythmic cues, we only used features which

account for such characteristics. These were the zero-crossing rate,

spectral roll-off, high-frequency energy, spectral centroid, spectral

spread, spectral skewness, spectral kurtosis, spectral flatness, spec-

tral entropy, roughness, spectral regularity, chromagram, and mel-

frequency cepstral coefficients. As these features are computed on

a short-term basis, the feature series of a complete stimulus was ag-

gregated by computing its mean and standard deviation. Since these

operations, however, ignore the temporal evolution of the feature se-

ries, the flux of the feature series was computed (i.e. the difference

between feature values of successive temporal segments). The flux

series was aggregated by computing its mean and standard deviation

as well. Hence, in total K = 74 features were obtained.

4.2. Principal component regression model

A regression model was obtained which predicts the scale-wise

median ratings of the CI listeners based on the extracted features.

To prevent overfitting effects, we applied the leave-one-out strategy

such that training sets consisting of I = 11 stimuli were selected in a

round-robin fashion for obtaining a regression model and the remain-

ing 12th stimuli was used for testing. Note, that by following this

strategy each stimulus rating is predicted using a different regres-

sion model. However, it ensures that the rating to be predicted and

the corresponding feature values are not used in computing the re-

gression coefficients. To avoid an ill-conditioned regression model,

we did not perform an ordinary least-squares regression (OLS) but

opted for a principal component regression (PCR) model. To this

end, the centered feature matrix of the training set, X ∈ R
I×K is

mapped onto its principal component (PC) score matrix S = XW,

which leads to an orthogonal feature representation. The columns of

the matrix W ∈ R
K×I contain the eigenvectors of the feature co-

variance matrix C ∼ XTX. Note, that typically a high percentage

of the total variance in the original features can be preserved in the
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Table 3. (a) RMSE values and (b) Pearson correlation coefficients between real and predicted median ratings for different numbers j of

retained principal components.

(a)

#PC j 1 2 3 4 5 6 7 8

Scale 4 0.91 1.18 0.68 0.53 0.66 0.75 0.81 0.71
Scale 5 1.04 1.11 1.01 0.54 0.50 0.82 0.90 0.81
Scale 6 0.65 0.67 0.47 0.61 0.48 0.54 0.56 0.63
Scale 7 0.81 0.89 0.69 0.82 0.68 0.83 0.85 1.28
Scale 8 0.65 0.61 0.62 0.55 0.60 0.80 0.80 1.08
Scale 9 0.60 0.50 0.72 0.52 0.49 0.43 0.43 0.41

(b)

#PC j 1 2 3 4 5 6 7 8

Scale 4 0.80 0.68 0.90 0.94 0.90 0.88 0.86 0.89
Scale 5 0.72 0.69 0.81 0.94 0.95 0.89 0.88 0.92
Scale 6 0.90 0.90 0.95 0.93 0.95 0.93 0.93 0.93
Scale 7 0.87 0.84 0.92 0.91 0.93 0.92 0.92 0.88
Scale 8 0.86 0.88 0.88 0.90 0.88 0.78 0.79 0.61
Scale 9 0.84 0.89 0.84 0.92 0.93 0.94 0.94 0.95

first j PC scores (with j < I), which are contained in the columns

of the matrix Sj = XWj . Here, Wj ∈ R
K×j denotes a matrix

containing only j eigenvectors. Hence, using a low number of PC

scores as predictor variables in an OLS regression model instead of

the original features leads to a regularized regression model which

solves the problem of feature collinearity. The vector of regression

coefficients in the PC space is obtained by γj =
(

ST

j Sj

)

−1

ST

j y,

where y ∈ R
I×1 is a centered vector containing the median rat-

ings of the training stimuli on a specific scale. These regression

coefficients can be applied to the PC scores of the feature vector

of the respective test stimulus x(i), with i = 1, 2, . . . , 12. The

corresponding rating prediction ŷ(i) is obtained by

ŷ(i) = y − x
T
Wjγj + x

T(i)Wjγj , (1)

where y, x, and x(i) denote the average of the median ratings in the

training set, the average across the rows of the feature matrix X, and

the feature vector of the test stimulus, respectively.

4.3. Prediction results

We applied PCR in a leave-one-out fashion using the median stim-

ulus ratings for scales 4 to 9 and the feature values extracted from

the signals. The number of retained PCs was set to j = 1, 2, ..., 8,

thereby ensuring that the number of scores based on which the re-

gression coefficients are computed is less than the number of stim-

uli. The prediction performance was evaluated by means of the root

mean squared error (RMSE) and the Pearson correlation coefficient

between the real ratings and the predicted ones, respectively. The re-

sults of the RMSE and the correlation coefficient are provided in Ta-

bles 3(a) and 3(b), respectively, where the lowest RMSE values and

the highest correlation values are set in bold. Taking into account

both measures we observe that a number of four scores is optimal

for scales 4 and 8. For scales 5 and 7 five scores result in the best

performance. For scales 6 and 9 the highest degree of prediction is

achieved by using three and eight scores, respectively. As an exam-

ple, in Figure 2(a) the real and predicted median ratings on scale 5

are depicted using the optimal number of five PCs. Similar results

are obtained for the other scales using the corresponding optimal

number of PCs.

Transforming the vectors of regression coefficients γj in the

principal component space back to the original feature space by

βj = Wjγj enables us to assess the importance of individual

feature dimensions. Therefore, in Figure 2(b) the transformed re-

gression coefficients are visualized for scale 5 using the optimal

number of five principal components. Note, that in this case we used

all 12 stimuli to obtain a single regression model. This plot shows

that most of the regression coefficients are zero or close to zero.

However, there are 12 features which differ considerably from zero

across all four scales and which therefore contribute most to the pre-

diction of the music ratings. These features are the mean, standard
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Fig. 2. (a) Real median ratings and their predictions for different

stimuli on scale 5 using 5 PCs and (b) regressions coefficients in

original features space.

deviation, and flux standard deviation of the spectral rolloff, spectral

centroid, spectral spread, and roughness feature, respectively. They

describe the amount of high-frequency energy in the signal, the fre-

quency region with the highest concentration of spectral energy, the

spectral bandwidth, and the degree of dissonance between pairs of

spectral peaks, respectively. We found that reducing the feature set

to these 12 features and performing PCR with this subset does not

degrade the prediction performance. This also applies to the other

scales for which the same reduced feature set can be used.

5. CONCLUSIONS

The results demonstrate a high prediction accuracy of the proposed

PCR model in combination with the applied cross-validation strat-

egy, yielding RMSE values between 0.41 and 0.68 and Pearson cor-

relation coefficients between 0.9 and 0.95. Moreover, an analysis

of the regression coefficients reveals that a reduction of the feature

set to a subset of 12 dominating features does not degrade the per-

formance. These features explain the perceptual music ratings of

CI listeners in terms of high-frequency energy, spectral bandwidth

and roughness of the stimuli. Since the stimuli chosen in this work

stem from small, purely instrumental musical setups, the proposed

measures are mainly applicable to recordings from similar acoustic

scenarios. Hence, the derived regression model may not be suited

for music including percussive instruments or vocals since this type

of music was excluded in this work. The measures can serve as

performance indicators for music processing algorithms in CIs with

respect to specific perceptual dimensions.
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