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ABSTRACT 

 

Pitch is an important characteristic of speech and is useful 

for many applications. However, it is still challenging to 

estimate pitch in strong noise. In this paper, we propose a 

joint training approach to determinate pitch. First, a 

Bidirectional Long Short-Term Memory Recurrent Neural 

Networks (BLSTMRNN) is trained to map the noisy to 

clean speech features. Second, the pitch estimation is also a 

BLSTM-RNN model. The feature mapping neural network 

serves as a noise normalization module aiming at explicitly 

generating the clean features which are easier to estimate 

pitch by the following neural network. BLSTM-RNN is 

trained on sequential frame-level features and capable of 

learning temporal dynamics. We also propose to take into 

account bottleneck features for pitch estimation. The 

experimental results show that the proposed method can 

obtain accurate pitch estimation and they show good 

generalization ability to new speakers and noisy conditions. 

The proposed approach also significantly outperforms other 

state-of-the-art pitch estimation algorithms. 

Index Terms— Pitch estimation, BLSTM-RNN, feature 

mapping, joint training, bottleneck features 

 

1. INTRODUCTION 

Pitch is an important characteristic of speech. A pitch 

estimation algorithm robust to background interference is 

critical to many applications, including speaker 

identification [1] and speech separation [2]. Although pitch 

estimation has been studied for decades, it is still 

challenging to estimate pitch from speech in strong noise. 

The most prominent difficulty is the corruption of the 

speech harmonic structure, since most of the existing 

algorithms depend on a clear harmonic structure [3]. 

Pitch is supra-segmental feature and context 

information is important for pitch estimation. Therefore, the 

pitch estimation can be divided into two steps: pitch 

candidate selection and pitch tracking. Firstly, possible 

pitches of each frame are selected as candidates. Then a 

continuous pitch contour is generated by tracking the 

selected pitch candidates with the temporal continuity 

constraint. Dynamic programming [4] or hidden Markov 

models (HMMs) [5] are often adopted for pitch tracking. 

For pitch candidate selection, recent studies on robust pitch 

estimation have explored either harmonic structure in the 

frequency domain [6, 7], periodicity in the time domain [8, 

9], or the periodicity of individual frequency subbands in the 

time-frequency domain [10, 11]. The traditional methods are 

mostly based on empirical parameters or a priori assumption 

on the noise. Rule-based pitch candidate selection may lose 

useful information because it simply ignores non-peak 

spectral information. Inspired by the success of deep 

learning [12, 13], some researchers select pitch candidates 

with deep models. Han and Wang investigate the use of a 

deep neural network (DNN) and recurrent neural network 

(RNN) for pitch candidate selection [14]. Su and Zhang 

propose to use convolution neural network (CNN) [15]. The 

deep learning approaches indeed could significantly 

improve the pitch estimation performance compared with 

other classification models in the matched noise conditions. 

But the generalization capability problem to unseen noise 

conditions was not solved very well.  

Motivated by the recent work for noise robust speech 

recognition and voice activity detection [16, 17, 18], we 

present a novel feature mapping front-end by using a 

BLSTM-RNN as a noise normalization module to estimate 

the clean speech features which make the pitch estimation 

decision easier with the subsequent BLSTM-RNN. 

Furthermore, the feature mapping neural network can be 

jointly trained with the pitch estimation neural network. In 

addition, we also propose to take into account phonetic 

information which is represented with bottleneck features 

for pitch estimation. The use of bottleneck activations from 

a DNN trained to predict senone posteriors has been 

previously proposed for the speaker verification [19, 20], 

language recognition tasks [21, 22] and voice activity 

detection [23]. In speech synthesis tasks, the phonetic 

information is significant for pitch tracking [24]. We 

hypothesize that bottleneck features should also be useful 

for the pitch estimation task. Therefore, a bottleneck DNN is 

trained to predict senone posteriors. The activations at the 

bottleneck layer are then used as input into another model to 

predict pitch.  

There are three main contributions in this paper: (1) a 

novel pitch extraction based on jointly trained neural 

network is proposed; (2) BLSTM-RNN is investigated for 

pitch estimation; (3) the bottleneck features are considered 

in pitch estimation task.  
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2. PROPOSED METHOD 

In this section, we firstly introduce the framework of the 

proposed method. Subsequently, the further detail is 

presented. The flowchart of proposed algorithm is shown in 

Fig. 1. 
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Fig. 1: Block diagram of the proposed method 

 

The overall flowchart of proposed method is illustrated 

in Fig. 1. In the training stage, the acoustic features of both 

clean speech and noisy speech training data are extracted. 

Then two BLSTM-RNN, namely feature mapping BLSTM-

RNN and the pitch estimation BLSTM-RNN, are trained. 

The bottleneck features is considered in pitch estimation 

BLSTM-RNN. Finally a generic BLSTM-RNN can be 

generated by joint training of both feature mapping and 

pitch estimation BLSTM-RNN. In the pitch extraction stage, 

after the feature extraction, frame-level decision is first 

given by the generic BLSTM-RNN. To achieve better 

performance, a post-processing based on dynamic 

programming can be applied to pitch extraction.  

 2.1. Spectral features extraction 

The features used in this study are extracted from the 

spectral domain based on [25]. A signal is first decomposed 

to the spectral domain using short time Fourier 

transformation. Let ( )tX f denote the power spectral density 

(PSD) of the frame t in the frequency bin f. The PSD in the 

log-frequency domain can be represented as ( )tX q , where 

logq f . Then, the normalized PSD can be computed as: 
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where L(q) represents the long-term average speech 

spectrum, and ( )tX q denotes the smoothed averaged 

spectrum of speech, which is calculated by using a 21-point 

moving average filter in the log-frequency domain and 

averaging over the entire sentence in the time domain in this 

study. With the normalized spectrum, we further enhance 

harmonicity using a filter with broadened peaks having an 

impulse response defined as: 
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where   is chosen so that ( ) 0h q dq  , K indicates the 

number of harmonics captured by the filter and  controls 

the peak width which is set to 1.8. 

The convolution 
'( ) ( ) ( )t tX q X q h q 

contains peaks 

corresponding to harmonics and their multiples and 

submultiples. Only the spectral components in the plausible 

pitch frequency range (60 to 400 Hz) are selected as features. 

So we have a spectral feature vector in frame: 

1( ( ),..., ( ))T

t t t nx X q X q  
                              (3) 

2.2 Pitch features quantization 

We set the target pitch frequency from 60 to 400 Hz, a 

typical range that covers both male and female speech in 

daily conversations. To simplify the modeling task, we 

quantize the plausible pitch frequency into pitch states by 

using 24 bins per octave in a logarithmic scale using [14]. 

We also incorporate a non-pitched state corresponding to an 

unvoiced frame. Therefore, we have 68 pitch states: 1 state 

for the non-pitched frame and the other 67 states for the 

pitched frame. The output of the model is the probability on 

pitch states, where each pitch state corresponds to a range of 

pitch values. 

2.3 Bottleneck features extraction 

 The features generated by the acoustic model are given by 

the activations in a bottleneck layer of a DNN trained to 

predict senone posteriors [23]. Senones are defined as tied 

states within context-dependent phones and are the unit for 

which observation probabilities are computed during 

automatic speech recognition (ASR). We can see these 

bottleneck (BN) features as a low-dimensional 

representation of the phonetic content in each frame. The 

spectral features and BN features are combined to train pitch 

estimation BLSTM-RNN.  

2.4. Model training for pitch estimation 

The BLSTM-RNN can model the deep representation of 

long-span acoustic features for pitch estimation. A BLSTM 

layer consists of a number of recurrently connected such 

memory blocks which could solve gradient vanish and 

gradient expansion problem. Each block contains the 

connected memory cells and three multiplicative units. The 

surrounding network can only interact with the memory 

cells via the gates. Two separate recurrent hidden layers are 

operating in opposite directions, thus providing access to 

long-range context in both input directions. BLSTM-RNN 

can be established by stacking multiple RNN hidden layers 

on top of each other and transform the input sequence. The 

Back-propagation through time (BPTT) algorithm is applied 

to both forward hidden nodes and backward hidden nodes, 

and back-propagates layer by layer [24]. The weight 

gradient is computed over the entire utterance. The effective 

learning capability of BLSTM-RNN is expected to benefit 

pitch estimation. Deep-layered architectures can represent 

high level representation of input features and BLSTM-

RNN can capture information from anywhere in the feature 

sequence. 

337



The joint training procedure of two BLSTM-RNN can 

be divided into two steps. The first step is to convert the 

pitch estimation BLSTM-RNN with the input of noisy 

spectral features and bottleneck features to the BLSTM-

RNN with the input of estimated clean spectral features and 

bottleneck features, which is implemented via a simple fine-

tuning of the original noisy BLSTM-RNN by only changing 

the input to the estimated clean features and bottleneck 

features rather than the noisy features and bottleneck 

features. The second step is to concatenate two BLSTM-

RNN to a single generic BLSTM-RNN. We directly stack 

the pitch estimation layers on top of the feature mapping 

layers. The output layer of feature mapping and the input 

layer of pitch estimation are merged in the generic BLSTM-

RNN. Using the same objective function as the pitch 

estimation BLSTM-RNN, all weight and bias parameters are 

then re-trained. After joint training, the generic BLSTM-

RNN yields a better performance than two separated 

BLSTM-RNN which can be explained as the feature 

mapping network is refined to enable a better pitch 

estimation performance rather than optimizing the original 

MMSE criterion. The model structure of proposed method is 

shown in Fig. 2. 
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Fig. 2: Model structure of proposed method 

 

2.5. Pitch tracking 
Pitch tracking generates a continuous pitch contour by 

maximizing the pitch probability under the temporal 

continuity constraint of speech. As suggested in [10], it can 

be modeled by a Laplacian distribution: 
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We generate the final continuous pitch contour by 

maximizing both the pitch probability and the transfer 

probability. This process is implemented by a dynamic 

programming algorithm [15]. The outputs are a sequence of 

pitch states for a sentence. We convert the sequence of pitch 

states to the sequence of frequencies and then use a 3-point 

moving average for smoothing to generate final pitch 

contours. 

 

3. EXPERIMENT AND RESULTS ANALYSIS 

3.1. Data and analysis methodology 

We evaluate the performance for the proposed approach 

using the TIMIT database [26] and GRID database [27]. The 

sampling rate is 8kHz. The 5000 utterances selected 

randomly from the TIMIT database were used for training 

and another 1000 randomly selected utterances from the 

TIMIT database were used to optimum model parameter. 

We compared our proposed algorithm with different 

baseline algorithms on the GRID corpus, where we used the 

test speakers from No.1 to No.20. The noises used in the 

training phase include 100 different noise types could be 

download from [28]. The noise types used in the test set 

include the training noise types and fourteen new noise 

types selected from NOISEX-92 [29]. Each utterance is 

mixed with every noise type in six SNR levels: -5, 0, 5, 10, 

15 and 20 dB. The groundtruth pitch is extracted from clean 

speech using Praat [6]. The same training set and validation 

set is selected for acoustic model training. The frame-level 

reference labels of each noisy utterance were generated by 

forced alignment on the corresponding clean utterance using 

the acoustic model trained on clean speech data. Sigmoid 

activation function was used and the number of units in each 

hidden layer was set to 2048 by default. The bottleneck 

layer is set to 100, 200 and 400 respectively. The 

distribution of hidden layer from input to output is 2048-

2048-2048-BN-2048.  

We evaluate pitch tracking results in terms of two 

measurements: detection rate (DR) and voicing decision 

error (VDE) [30].  DR is evaluated on voiced frames, where 

a F0 estimate is considered correct if the deviation of the 

estimated F0 is within 5% of the ground truth F0, and VDE 

indicates the percentage of frames are misclassified in terms 

of voicing: 

0.05 100%
p

N
DR

N
                            (5) 

100%V U U VN N
VDE

N

 
                   (6) 

We compare our approaches with different pitch 

determination algorithms: PEFAC [25] and a DNN method 

[14]. Table 1 shows different BLSTM-RNN model. 

 
Table 1. Configure for different BLSTM-RNN model 

Configure 
Feature 

Mapping 

Jointly 

Trained 

Bottleneck 

Features 

BLSTM-RNN1 No No No 

BLSTM-RNN2 Yes No No 

BLSTM-RNN3 Yes Yes No 

BLSTM-RNN4 Yes Yes Yes 

 

3.2. The evaluation of hyper parameter configure 
We have conducted experiments for BLSTM-RNN 

using different numbers of hidden layers and different 

numbers of hidden units. We firstly evaluate the features 

enhancement BLSTM-RNN, the BLSTM-RNN with two 
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hidden layers produces better slightly performance to that 

with three hidden layers, and outperforms that with one 

hidden layer obviously. The optimum number of hidden 

units is 2048. Then we evaluate pitch estimation BLSTM-

RNN, the optimum configuration is shown as following: 2 

hidden layers and 1024 hidden units (The bottleneck 

features is 200). In addition, different bottleneck layers (100, 

200 and 400) are validated in pitch estimation BLSTM-

RNN. The optimum performance is obtained with 200 

dimensions features. Finally, we evaluated learning rates in 

generic BLSTM-RNN. The learning rate is set to 0.0005. 

3.3. Overall evaluation 
Table 2 shows the detection rates for training noises 

across a wide range of SNRs. The BLSTM-RNN based 

methods achieve substantially higher detection rates than 

others, especially in very low SNR conditions. The jointly 

trained BLSTM-RNN performs better than the directly 

trained BLSTM-RNN. Table 3 shows the detection rates for 

new noises that are not seen in the training phase. Similar to 

Table 2, the proposed approach yields the best performance 

in these noise conditions.  

 
Table 2. Performance in trained noise condition for DR 

 DR % 

SNR -5dB 0dB 5dB 10dB 15dB 20dB 

PEFAC 42.42 49.43 61.60 72.74 83.94 90.92 

DNN 47.34 53.72 64.77 75.06 85.81 91.36 

BLSTM-RNN1 49.20 55.33 65.52 75.53 86.06 91.19 

BLSTM-RNN2 51.51 57.45 67.33 76.82 86.88 91.46 

BLSTM-RNN3 52.02 57.83 67.90 77.46 87.39 91.64 

BLSTM-RNN4 52.54 58.28 68.33 77.82 87.64 91.71 

 
Table 3. Performance in unseen noise condition for DR 

 DR % 

SNR -5dB 0dB 5dB 10dB 15dB 20dB 

PEFAC 41.37 48.56 60.58 72.42 85.52 91.36 

DNN 43.52 50.26 61.63 73.06 85.81 91.48 

BLSTM-RNN1 45.65 52.03 61.98 73.14 85.69 90.96 

BLSTM-RNN2 47.98 54.32 63.86 74.37 86.32 91.33 

BLSTM-RNN3 48.51 54.76 64.37 74.83 86.78 91.49 

BLSTM-RNN4 49.06 55.12 64.75 75.14 86.96 91.57 

 
Table 4. Performance in trained noise condition for VDE 

 VDE % 

SNR -5dB 0dB 5dB 10dB 15dB 20dB 

PEFAC 35.52 27.26 22.32 16.55 11.37 6.15 

DNN 32.11 24.44 19.86 15.07 9.93 5.34 

BLSTM-RNN1 30.33 23.02 18.73 14.26 9.34 4.83 

BLSTM-RNN2 28.86 21.64 17.63 13.35 8.66 4.57 

BLSTM-RNN3 27.66 20.67 16.78 12.69 8.17 4.23 

BLSTM-RNN4 27.03 20.19 16.38 12.34 8.02 4.15 

 

Table 5. Performance in unseen noise condition for VDE 

 VDE % 

SNR -5dB 0dB 5dB 10dB 15dB 20dB 

PEFAC 36.65 28.07 24.03 18.54 12.73 6.67 

DNN 34.04 26.61 22.72 17.58 12.32 6.56 

BLSTM-RNN1 32.41 25.63 21.99 17.02 11.89 6.31 

BLSTM-RNN2 31.24 24.50 20.73 15.96 11.18 5.69 

BLSTM-RNN3 30.04 23.52 19.91 15.38 10.79 5.43 

BLSTM-RNN4 29.47 23.05 19.52 14.93 10.46 5.22 

 

Table 4 and Table 5 show the VDE results for the seen 

and unseen noises, respectively. As shown in the tables, our 

algorithms produce lower voicing detection errors than 

others. In addition, the performance could be improved 

while the bottleneck features are considered in generic 

BLSTM-RNN. 

It was obvious that generic BLSTM-RNN achieved 

consistent and significant improvements for all the unseen 

noises with different SNRs, especially at low SNRs. Overall, 

generic BLSTM-RNN improved the generalization 

capability, which could be explained as the feature mapping 

neural network serves as a noise normalization module 

aiming at explicitly generating the clean features which are 

easier to estimate pitch by the following neural network. 

The gap between proposed BLSTM-RNN and others 

BLSTM-RNN became larger at lower SNR for the same 

noise type, which demonstrated proposed method was more 

effective under low SNRs. In addition, the bottleneck 

features are useful for the pitch estimation, because they are 

trained as a low-dimensional representation of the phonetic 

content in each frame and the phonetic information is 

significant for pitch tracking.  

 

4. CONCLUSION 

In this paper, we propose a joint training approach to 

determinate pitch. BLSTM-RNN is investigated for pitch 

estimation. We also propose to take into account phonetic 

information which is represented with bottleneck features 

for pitch estimation.  The experimental results show the 

proposed approach also significantly outperforms other 

state-of-the-art pitch estimation algorithms. 

As for the future work, we will focus on improving the 

practicability of our approach in both accuracy and 

efficiency. We plan to explore different structures for the 

bottleneck DNN. We will extend our method to multi-pitch 

estimation. 
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