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ABSTRACT
In this work, we propose a novel multi-pitch estimation
technique that is robust with respect to the inharmonicity
commonly occurring in many applications. The method does
not require any a priori knowledge of the number of signal
sources, the number of harmonics of each source, nor the
structure or scope of any possibly occurring inharmonicity.
Formulated as a minimum transport distance problem, the
proposed method finds an estimate of the present pitches
by mapping any found spectral line to the closest harmonic
structure. The resulting optimization is a convex and highly
tractable linear programming problem. The preferable per-
formance of the proposed method is illustrated using both
simulated and real audio signals.

Index Terms— Multi-pitch estimation, frequency clus-
tering, inharmonicity, optimal transport distance, convex op-
timization.

1. INTRODUCTION

The problem of estimating the fundamental frequency, or
pitch, of a harmonic, or close-to-harmonic, signal occurs in
a wide range of applications [1–9]. Often, the problem is
complicated by the number of sources being unknown, as is
the number of components detailing each source. Further-
more, some sources, such as, e.g., audio signals resulting
from stringed instruments, exhibits inharmonicity, implying
that higher order components may deviate from the harmonic
model, often with increasing deviation for the higher harmon-
ics [10–12]. In such scenarios, a naive approach exploiting
the sinusoidal frequency model in the time domain results
in a cumbersome high dimensional optimization problem,
as the uncertainty due to the inharmonicity will occur in the
nonlinear frequency parameter. Previously, this problem has
been approached by approximate optimization in the time do-
main [12, 13], approximating the frequency uncertainty with
an uncertainty in the functional form of the sinusoid [10],
or via a subspace-based framework robust to such devia-
tions [14]. For certain applications, there also exists source
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specific pitch estimators that rely on the inharmonicity fol-
lowing a parametric model, see, e.g., [15]. However, such
estimators are generally unable to resolve cases when har-
monics from different sources overlap, as commonly occurs,
for instance, in western music playing in harmony.

In order to handle such situations, while still allowing
for an unknown number of sources, we here formulate the
multi-pitch problem such that the estimated pitches are ob-
tained as the ones minimizing a particular (convex) Monge-
Kantorovich optimal transportation problem. These methods
have also earlier been shown useful for problems in signal
analysis, e.g., for clustering, tracking, registration, and ro-
bust identification [16–19]. Transport problems have a rich
history going back to questions concerning how to most ef-
ficiently transport soil from one location to another, and has
since attracted attention in various fields (see [20] and refer-
ences therein). An example of this is the facility localization
problem, where for a set of customers one seeks to determine
locations of facilities that minimizes the sum of the distances
from each customer to its closest facility. As we will see,
the multi-pitch estimation problem can be reformulated as a
facility location problem [20].

In this setting, the harmonic model (facilities) should be
selected so that the spectral components (customers) can be
transported to the closest harmonic model with minimal total
cost. In this case, the mass to be moved constitutes the ampli-
tude of the observed spectral component at a given frequency;
as this amplitude may originate from two or more sources
which have overlapping harmonics at the given frequency, we
should allow the optimization to transport parts of the ob-
served amplitude to different harmonic candidates. We fur-
ther wish to introduce restrictions on the allowed mass trans-
port problem such that ambiguity with different suboctaves
are avoided, promoting spectrally smooth solutions similar to
those proposed in [2, 3, 21, 22]. As we show in the following,
the desired optimization problem can be formulated as a lin-
ear programming (LP) problem, for which powerful solvers
are available, even for big data applications [23]. In the nu-
merical section, we illustrate the preferable performance of
the proposed method as compared to several previously sug-
gested methods, for both simulated and real audio signals.
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2. SIGNAL MODEL

Consider N samples of a (reasonably) stationary signal, y(t),
that may be well described as a sum of close-to-harmonic
sources, x(t), corrupted by an additive broadband noise, e(t),
such that y(t) = x(t) + e(t), where1

x(t) =

K∑
k=1

Lk∑
`=1

ak,`e
i2π(fk`+∆k,`)t . (1)

Here, K denotes the number of sources, each containing Lk
close-to-harmonic signal components. The constant fk de-
notes the pitch of the kth source, and the constants ak,` and
∆k,` denote the complex amplitude and frequency deviation,
respectively, of the `th harmonic of the kth source. The de-
viation will thus be zero for fully harmonic sources, whereas
∆k,` otherwise details the inharmonicity. Depending on the
source, one may have models for such inharmonicities, such
as the model used for pianos (see, e.g., [11]). In the frequency
domain, the assumed signal may thus be represented as

X(f) =

K∑
k=1

Lk∑
`=1

ak,`δ(f − fk`−∆k,`) (2)

where δ(·) denotes the Dirac delta function. In this work,
we aim at estimating both the number of sources, K, and
their pitches, fk, while allowing for unknown frequency devi-
ations, ∆k,`. In order to do so, we consider the transport cost
(see, e.g., [20]) associated with assigning each spectral com-
ponent to a set of candidate pitches, i.e., the transport cost of
moving the component onto the assumed harmonic structure
related to each candidate pitch.

In order to introduce notation, let F denote the set of ob-
served spectral components in the signal of interest, whereas
Ω denotes the set of all considered candidate pitches. Further-
more, let M and P denote the number of elements of the sets
F and Ω, respectively. Here, the number of candidate pitches
are assumed to be much larger than the number of sources,
such that P � K. Finally, each candidate pitch is assumed
to have at most Lmax ≥ maxkLk harmonics.

3. OPTIMAL TRANSPORT

In order to find an optimal assignment of the amplitudes cor-
responding to the observed line spectrum frequencies to the
set of pitch candidates, one needs to define a function de-
scribing the cost of a certain assignment and then minimize
this function over all possible assignments. In order to do
this, let the function c(f, fp) describe the cost of moving one
unit of amplitude from the line spectral frequency f to the
pitch candidate fp. For example, the cost of assigning all
amplitudes in the line spectrum Y (f), defined as Y (f) =

1For computational and notational simplicity, we here use the time-
discrete analytical version of the measured data.
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Fig. 1. Transportation cost for candidate pitch with funda-
mental frequency 200 Hz.∑
fm∈F afmδ(f − fm), where afm denotes the amplitude of

the spectral line at frequency fm, to the candidate pitch fp is∑
fm∈F

|afm | c(fm, fp) . (3)

To describe the cost of a general assignment, let C be the
P ×M matrix whose (p,m):th element is equal to c(fm, fp).
Also, let W be the P ×M matrix describing the amplitude
assignment, i.e., the (p,m):th element of W describes how
much of the magnitude |am| that is assigned to candidate pitch
fp. Thus, to ensure that all the estimated spectral content is
mapped to some pitch, the sum of the m:th column of W
must be equal to |am|. With this, the cost of an assignment
described by W may be expressed as tr

(
CTW

)
, where (·)T

denotes the transpose, and tr(·) denotes the trace of a matrix.
Defining the M × 1 vector a =

[
|a1| ... |aM |

]T
, and

letting 1P be a P × 1 vector of ones, one may formulate the
desired optimal transport problem as

minimize
W,x

tr
(
CTW

)
subject to WT1P = a, xT1P = K

W ≤ xaT , W ≥ 0

xi ∈ {0, 1} , i = 1, . . . , P

(4)

where the inequalities for matrices and vectors should be in-
terpreted element-wise. The binary vector x here controls
whether a pitch candidate fp is present in the solution or not,
i.e., if xp = 1, then fp is present and if xp = 0, then it
is not. However, as xi are binary variables, this problem is
not convex. Furthermore, this formulation assumes precise
knowledge of the number of sources, K, which in general is
unknown. In order to remedy this, we consider the convex
relaxation (cf. [16])

minimize
W,x

tr
(
CTW

)
+ λ1TPx

subject to WT1P = a, W ≤ xaT

x ≥ 0, W ≥ 0

(5)
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Fig. 2. Percentage of pitch estimates found within ±3% of
the ground truth in the simulated data case.

with λ > 0. The second term of the objective function in
(5) allows for an implicit choice of the sparsity of x via the
regularization parameter λ. However, using the relaxation in
(5), the cost function is unable to distinguish between sub-
octaves, i.e., the row of C corresponding to some f0 that may
be greater or equal to the row corresponding to f0/2. Fortu-
nately, this may be included in the modeling by considering
the structure of the amplitude assignment. Specifically, for
each candidate pitch fp, define an Lmax ×M matrix L(p) that
describes the mapping between the line spectral frequencies
and the harmonics corresponding to fp. That is, the (`,m):th
element of L(p) is equal to one if fp` is the harmonic of pitch
fp that is closest in frequency to the line spectral frequency
fm, and zero otherwise. As each spectral line is mapped to
precisely one harmonic, each column of L(p) has exactly one
element equal to one, whereas all the rest are zero. This lin-
ear mapping thus allows for the inclusion of constraints on
the relative amplitudes of each pitch. For example, it may be
used to promote spectral smoothness in each pitch. In this
work, we restrict our attention to only requiring active pitches
to have non-zero amplitude in the first harmonic. As this con-
straint is then convex it can easily be included in (5), yielding

minimize
W,x

tr
(
CTW

)
+ λ1TPx

subject to WT1P = a, W ≤ xaT

x ≥ 0, W ≥ 0

((Q+ 1) e1 − 1M )
T

L(p) [W]
T
p· ≤ 0

(6)

for p = 1, . . . , P . Here, Q > 1 assures that a scaled version
of the amplitude assigned to the first harmonic dominates the
amplitude assigned to the rest of the harmonics, thus enforc-
ing solutions where active pitches have non-zero amplitude
assigned to their first harmonics. In our simulations, we use
Q = 3Lmax. Here, e1 denotes the M × 1-vector with its first
element equal to one, and the rest zero, with [W]p· denoting
row p of W. It is worth noting at the resulting problem is an
LP, which may thus be solved using standard convex solvers.
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Fig. 3. Expected maximal absolute deviation of pitch esti-
mates from the ground truth in the simulated data case.

4. CHOICE OF TRANSPORT COST FUNCTION

To model the amplitude distribution of a pitch, the transport
cost function c(·, ·) should assign the cost of associating am-
plitude at a frequency fm to a candidate pitch fp depending
on the distance between fm and the closest harmonic of fp,
e.g.,

c(fm, fp) = min
`∈N

c(fm, fp`) = min
`∈N
|fm − fp`|2 . (7)

However, this function would too harshly penalize inhar-
monicity, as the higher harmonics of inharmonic pitches
could typically deviate significantly from integer multiples of
the pitch. We therefore propose to only have harsh penalties
for the pitch, while allowing subsequent harmonics to deviate
somewhat more. Specifically, for the first harmonic, let

c1(fm, fp) = ρs+

(
|fp − fm| ,

∆f

2

)ν
(8)

where s+(·) is the soft threshold function defined as

s+

(
x,

∆f

2

)
=

∣∣∣∣max
(
x− ∆f

2
, 0

)∣∣∣∣ (9)

and ∆f is the spacing of the candidate pitch grid. Thus, we al-
low for a deadzone corresponding to the grid resolution, while
penalizing larger deviances according to a scaled, highly non-
convex, pseudo-norm. To allow for increasing deviations with
higher harmonics, we instead use

c`(fm, fp) = min
(
ε`(fm, fp), ξε`(fm, fp)

2
)

(10)

where ε`(fm, fp) = s+(|fp − fm| , ψfp`2). Thus, the width
of the deadzone is dependent on the harmonic order ` as well
as being scaled by a small number, ψ. In our simulations,
ρ = 100, ξ = 0.01, ν = 0.05, and ψ = 0.005. An illustration
of the transport cost function is shown in Figure 1, where the
cost of assigning frequencies on the interval (100, 1700) Hz is
shown for a pitch of 200 Hz. Here, the width of the deadzone
scales quadratically with the harmonic order.
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Fig. 4. Estimated fundamental frequencies for a signal con-
taining two trumpet notes as well as two piano notes.

5. NUMERICAL RESULTS

We proceed to examine the performance of the proposed
method using both simulated and measured audio signals. In
both settings, the line spectrum is estimated using the MUSIC
estimator [24], with M �

∑
k Lk. The amplitudes am are

then estimated using least-squares. Initially, we examine a
simulated signal consisting of two pitches, with pitches f1

and f2, with varying degrees of inharmonicity. The harmon-
ics of the pitches are modelled using the piano model (see,
e.g., [11]), i.e., fk,` = fk`

√
1 + β`2, for ` = 1, . . . , Lk and

k = 1, 2, where the parameter β � 1 controls the level of
inharmonicity. The frequencies f1 and f2 are drawn uni-
formly on the intervals (300, 390) Hz and (400, 540) Hz,
respectively. The harmonic orders Lk are drawn uniformly
on [8, 12], whereas the magnitude of each harmonic is drawn
uniformly on (0.75, 1.25), with phases drawn uniformly on
[0, 2π). We thereafter add an additive white Gaussian noise
to the signal, resulting in a signal-to-noise-ratio of 30 dB.
The signal is then sampled for 30 ms at 40 kHz. This is done
for 500 Monte Carlo simulations and for varying values of
β. Performance is then measured as the percentage of the
simulations in which both pitch estimates are found within
±3% of their respective ground truths and where no erro-
neous extra pitch estimates are produced. For the proposed
method, we set Lmax = 20 and λ = 15. As comparison, we
include three other types of pitch estimators; the approximate
non-linear least squares estimator (ANLS) (see, e.g., [5]);
the autocorrelation-based enhanced summary autocorrelation
(ESACF) estimator [25]; and the method presented in [9],
which is based on probabilistic latent component analysis.
The latter method, hereafter referred to as BW15, is specif-
ically designed for multi-pitch estimation for music signals,
with pitch estimates restricted to the chromatic Western scale,
i.e., to the keys of the piano. This frequency resolution cor-
responds precisely to the chosen accuracy limit of ±3% of
the ground truth pitches. The method is based on extensive

Proposed ESACF BW15
Accuracy 0.928 0.691 0.366
Precision 0.974 0.984 0.391

Recall 0.952 0.699 0.849

Table 1. Performance measures for the proposed method as
well as the ESACF and BW15 methods.

training on a database of various forms of signals2. As ANLS
requires knowledge of both the number of sources and the
number of harmonics for each source, it is here provided
with oracle model order knowledge. For all methods, the
algorithm settings recommended by their respective authors
have been used. As shown in Figure 2, the proposed method
outperforms the other methods for all considered levels of
inharmonicity. It may be noted that the performance of the
BW15 method is not strictly decreasing with the inharmonic-
ity parameter β; rather, the best performance is achieved for
the value β = 10−3, arguably due to this being the best
match to the method’s training library. We also evaluate the
accuracy of the pitch estimates, measured as the maximum
absolute deviation of each estimate from its corresponding
ground truth, conditioned on that the estimates are found
within ±3% of their respective ground truths. The results are
shown in Figure 3, with deviation shown in log-scale. Again,
the proposed method outperforms all comparison methods.

In Figure 4, we study a real audio signal consisting of two
harmonic trumpet signals and two piano signals with some in-
harmonicity. Specifically, the signal is composed of two trum-
pet signals, with pitches 440 and 554.37 Hz, corresponding to
the notes A4 and D[5, and of two piano notes, with pitches
329.65 and 415.3 Hz, corresponding to the notes E4 and G]4.
Ground truth estimates for the trumpet pitches have been ob-
tained by applying the YIN estimator [26] to the single chan-
nel recordings. Ground truths for the pianos are known as
the signals are simulated using software synthesizers. As can
be seen in Figure 4, the proposed method is able to correctly
group the frequencies into the correct pitches, with only small
errors during the onset phase, where the frequency content
is highly transient and non-sparse. The recording was sam-
pled at 44.1 kHz and was subdivided into non-overlapping
estimation frames of length 30 ms. The settings for the pro-
posed method was Lmax = 10 and λ = 15. Table 1 com-
pares the proposed method to the ESACF and BW15 meth-
ods, while excluding ANLS as exact model order information
of the number of harmonics of each source is unavailable. The
table presents the performance measures Accuracy, Precision,
and Recall [27]. As can be seen, the performance of the pro-
posed method is clearly better than that of the comparison
methods; likely, this results from ESACF having problems
with estimating the pitches of the inharmonic pianos, whereas
BW15 suffers from not being able to accurately estimate the
trumpets, perhaps caused by bad match to its training data set.

2The implementation used was provided online by the authors of [9].
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