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ABSTRACT

Although there are many systems concerned with melody ex-
traction from polyphonic music, there are certain limitations
stemming from the spectral processing that are yet to be over-
passed. In this paper, we propose a novel method to create
sets of melodic pitch contours which are shown to contain
harmonic information critical for a melody extraction system.
The proposed approach exploits interesting characteristics of
the reassigned spectrogram and computes a new representa-
tion which comprises a set of points in the time-frequency
domain, weighted according to their dominance, in terms of
harmonic content. The experimental results show that the pro-
posed method is a valid approach to the detection of time-
frequency points that are related to the melodic content of
music signals. Moreover, the quality of the acquired melodic
pitch contours is proved through a comparison with those ex-
tracted by a state-of-the-art melody extraction system.

Index Terms— Melody extraction, reassigned spectro-
gram, singing voice, pitch contours

1. INTRODUCTION

The increasing interest in music related applications, for ex-
ample the automatic transcription of audio recordings, the
creation of karaoke files, and the music retrieval by singing
or humming, has recently led to extensive research activities
in the area of modelling the vocal melody of real world music
recordings[1, 2]. According to the prerequisites of each spe-
cific application, the melody line has to be described in terms
of a sequence of frequencies, transcribed into sung or played
notes, or expressed in terms of vocal effects, as for example
tremolo and vibrato.

The task of melody extraction is closely related to pitch
detection and, due to the similarities of the two tasks, the
first successful solutions were inspired by the extensive lit-
erature in the area of pitch extraction. However, the nature of
music signals brings limitations in the success of such meth-
ods. First, a music signal may comprise many different instru-
ments, with two or more notes from the same, or different, in-
struments sounding simultaneously. Furthermore, percussive
sounds and inharmonicities may, in principle, take place at

any moment and the vocal melody may interfere with partials
of different sounds. For all these reasons, the use of pitch ex-
traction methods, that are designed for speech or monophonic
sound, does not produce the necessary results when singing
voice, or another melody source in the context of polyphonic
music is considered. On the other hand, current melody ex-
traction methods can face problems when, for instance, the
target harmonic content is vocal. The fine structure of a vocal
melody during vocal effects such as tremolo and vibrato can
be hardly characterized with the commonly used spectral rep-
resentations, such as the short time Fourier transform (STFT).

In this work we propose a novel method to extract pitch
contours that describe the melodic content of music signals.
The strength of this system lies in the proposed spectral rep-
resentation, called dominance reassigned spectrogram (DRS).
Since this representation utilizes the reassigned spectrogram
(RS) it offers a much better localization of the energy of the
various harmonic components. In addition, the dominance
weighting that we propose exploits the characteristics of the
RS in order to add extra salience to the components that are
related to the predominant melody. Furthermore, we describe
a way to map the sporadic data of the DRS into melodic pitch
contour (MPC) sets.

The remainder of this paper is organised as follows. In
Section 2 we review the existing work in the area of melody
line extraction, with a focus on the spectral processing com-
monly applied, and introduce the RS. In Section 3 the details
of the proposed method are described. The experimental ac-
tivities and related results are presented in Section 4. Finally,
in Section 5 we conclude this paper with an overview of the
proposed method and the results.

2. RELATED WORK

Based on the approach selected to process the input signal
in the spectral domain, melody extraction systems can be
divided into two broad categories: the salience-based and
the separation-based. Methods in the first category trans-
form the input audio signal into a pitch salience signal, where
each frequency is associated with a certain value of energy or
salience. Sub-harmonic summation (SHS) is very commonly
used in order to create the salience signal [3, 4, 5]. On the
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other hand, separation-based approaches [6, 7] attempt to
segregate the singing voice from the music accompaniment
and perform the melody line detection on the segregated
vocal signal. Hybrid approaches, where spectral process-
ing is based on a salience signal extracted after an initial
harmonic/percussive separation step, were proposed in [8, 9].

After the spectral processing, that commonly results in
a multi-pitch representation of the input music signal, the
melody line is tracked. This tracking is done through dy-
namic programming [8, 10, 7], tracking agents [11, 12], or
hidden Markov models (HMM) [13, 14, 9]. Finally, a voicing
detection part, often incorporating some type of thresholding
[5, 15, 16], determines in which regions in time the melody
line is active. In this work, we focus on the first part of melody
extraction systems, i. e., the spectral and multi-pitch repre-
sentation, and do not address the melody line tracking and the
voicing detection parts.

2.1. Spectral Representations

The vast majority of melody extraction systems exploits the
STFT for the transformation of the input signal into the spec-
tral domain. The problems that arise from the use of the
STFT in the context of many diverse signal processing ap-
plications are extensively discussed in the literature. These
concern the unavoidable trade-off between the time and fre-
quency resolution, and the fact that the selected resolution is
fixed over the whole spectrum. However, in melody detec-
tion different frequency resolutions in the various spectral re-
gions can be highly beneficial. For these reasons, alternative
representations were proposed for the tasks of pitch tracking
and melody extraction, as for example Multi-Resolution FFT
[17, 8, 9], multirate filterbanks [12] and constant-Q transform
[15]. Other approaches include frequency and time correction
mechanisms as the ones discussed in [18], parabolic interpo-
lation as in [19] and instantaneous frequency (IF) calculation
as in [17, 4].

2.2. The reassigned spectrogram

The RS, firstly introduced in [20], provides an estimation of
the IF, by assigning the spectral energy of each analysis frame
closer to its true region of support. It has been successfully
used in the past for other signal processing tasks, for example
voice identification, phonation analysis, and visualization of
the formant structure in speech [21], automatic chord recogni-
tion [22] and automatic speech segmentation [23]. Although a
successful method to separate the components from impulses
in the RS has been thoroughly described in [24], and the use
of RS for improved estimation of IF has been successfully ap-
plied in [25], there is no prior work that utilizes the RS as the
spectral representation of music signals for melody tracking.
In [26], the RS of musical audio data was analysed in an early
attempt to use it within a front-end for transcription, but no
further work supported this initial study.

The mathematical formulation of the RS begins with the
STFT of a signal, X(t, ω). The energy of the point (t, ω),
where t is the time frame and ω is the frequency bin, is re-
assigned at a new point that better reflects the distribution of
energy of the analysed signal. The time-frequency reassigned
(TFR) coordinates (t̂, ω̂) are calculated from the derivatives
of the spectral phase φ(t, ω) as follows

t̂(t, ω) = −∂φ(t, ω)

∂ω
(1)

ω̂(t, ω) = ω +
∂φ(t, ω)

∂t
. (2)

In practise, spectral energy from the coordinate (t, ω) is real-
located to coordinate (t̂, ω̂), the latter one defined in the con-
tinuous time and frequency domains.

3. PROPOSED METHOD

The proposed processing starts with a preprocessing step,
where an equal loudness filter is applied in order to enhance
the frequencies where the melody line is normally found. The
next steps, i.e., DRS representation and MPC extraction are
introduced in the following.

3.1. DRS representation

As described in [27, 28], the STFT points that correspond to a
minimum distance between the IF and the center of the spec-
tral bins are strong indicators of the presence of fundamen-
tal frequencies in this spectral region. The above observation
can be extended to the RS, where a minimum frequency reas-
signment is observed in the regions of harmonic components.
Therefore, the dominance RS (DRS) is defined as

D(t̂, ω̂) =

(
X(t̂, ω̂)

ω − ω̂

)2

, (3)

where X(t̂, ω̂) is the power RS and ω denotes the frequency
from which the reallocation originated. The difference ω− ω̂,
i. e., the amount of frequency reassignment from the spectral
point (t, ω) to the corresponding TFR point, is minimized in
the region around dominant components, leading to a max-
imization of D(t̂, ω̂). Further salience is added to the most
dominant TFR points with the use of the power law. In prac-
tice, the DRS assigns a degree of dominance to each TFR
point, describing the importance of this point in terms of
melodic content. This novel spectral representation of the
music signal is used in the subsequent processing and en-
ables the proposed multi-pitch extraction that results is sets
of melodic pitch contours (MPC).

3.2. MPC extraction

Here, we propose a method that selects TFR points that are re-
lated to melodic content and groups them into MPC. The goal
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is to detect regions of the DRS where the TFR points are con-
nected, and then, assign these points to unique pitch contours.
The detected connectivity is a strong indication that in the cor-
responding RS region there is an underlying structure, which
is related to the melodic components. In order to create the
pitch contours we built upon the fact that more TFR points,
of higher dominance, are found around the melodic compo-
nents. The iterative Algorithm 1 is proposed as a means to
determine the set of MPC.

Algorithm 1 MPC extraction

1: Input: The dominance RS D(t̂, ω̂), the RS X(t̂, ω̂).
2: Etotal ←

∑
∀(t̂,ω̂)X(t̂, ω̂), Econtours ← 0

3: while Econtours ≤ rminEtotal do
4: Initialize a new pitch contour, C
5: N0 ← arg maxN

∑
(t̂n,ω̂n)∈N D(t̂n, ω̂n)

6: i← 0
7: while |Ni| < Nmin do
8: Pc(Ni)← centerOfGravity(Ni)
9: Add Pc(Ni) in C

10: Remove Pc(Ni) from D(t̂, ω̂)
11: Ni+1 ← getNeighbourhood(Pc(Ni))
12: i← i+ 1
13: end while
14: Econtours ← Econtours +

∑
(t̂,ω̂)∈C X(t̂, ω̂)

15: end while

A neighbourhoodN , of a central TFR point (t̂c, ω̂c) is de-
fined as the spectral area that contains all the spectral points
for which |t̂c − t̂| ≤ ∆t̂ and |ω̂c − ω̂| ≤ ∆ω̂, where ∆t̂ de-
notes the maximum allowed time deviation from the center of
the neighbourhood and ∆ω̂ the maximum allowed frequency
deviation. On the other hand, given a neighbourhood N , the
central TFR point (t̂c, ω̂c) can be found as the center of grav-
ity of it, as follows

(t̂c, ω̂c) =
1

DN

 ∑
(t̂n,ω̂)∈N

D(t̂n, ω̂)t̂n,
∑

(t̂,ω̂k)∈N

D(t̂, ω̂k)ω̂k

 ,

(4)
where DN is the local dominance of N , calculated as

DN =
∑

(t̂n,ω̂n)∈N

D(t̂n, ω̂n) . (5)

At each outer iteration of the algorithm 1, the neighbour-
hood with the highest local dominance is selected as the start-
ing point of a new pitch contour (see line 5). In the inner
iteration, the center of gravity Pc(Ni) of the neighbourhood
under consideration is added to the current contour. The same
point is used in order to update the neighbourhood before
the following iteration, as described above, and then it is re-
moved from the DRS. The contour tracking continues with
the remaining points and it is exhaustive, meaning that a con-
tour ends when the newest created neighbourhood is empty,

or its cardinality |Ni| reaches a certain threshold Nmin, and
both directions in time have been checked. The outer iteration
stops when the energy of the created contours, Econtours, is
more than a certain ratio, rmin, of the total energy, Etotal, of
the musical excerpt. The selection of Nmin has been exper-
imentally defined to 15 TFR points. The setting of rmin is
discussed in Section 4.

After the extraction of the MPC, a post-processing step
that detects and corrects harmonic sets is applied. The pro-
cessing is based on the SHS matching theory of [29], which
inspired a very successful pair wise evaluation of spectral
peaks, proposed in [30]. Here, we use the same idea of pair-
wise comparison of pitch contours in order to detect harmonic
sets and correct them by adding missing harmonic roots.

4. EXPERIMENTS AND RESULTS

4.1. TFR point-wise evaluation

Here, we study the ability of the proposed method to cor-
rectly identify the set of TFR points that are related to the
melodic content of the piece. We compare the behaviour of
the proposed method to a baseline method, which comprises
imposing the mixed partial derivative (MPD) criterion of [24].
According to this approach, the set of points that are related
to the harmonic content of the signal are those that meet the
following condition ∣∣∣∣∂φ2(t, ω)

∂t∂ω

∣∣∣∣ < A , (6)

where A is a tolerance factor that defines the maximum varia-
tion of an accepted component from the ideal sinusoid. In or-
der to quantify the results, we define the point precision/recall
and f-measure metrics, which are calculated over the number
of TFR points that are retrieved. A retrieved point is consid-
ered relevant if it lies within half semitone from the annotated
melody line.

There is a trade-off between how precise (point precision)
and how sensitive (point recall) each TFR point selection
method is. In the proposed method, the exact behaviour in
terms of precision/recall is controlled by the parameter rmin

of Algorithm 1. In the MPD method this is controlled by
the threshold value A introduced earlier. In Figure 1, the
point precision/recall curves for two different datasets are
presented. Experiments were conducted using data sampled
at 44.1kHz, with a window size of 30ms and a step of 5ms.
The MPC extraction is based on neighbourhoods created with
∆t̂ of 15ms and ∆ω̂ of 0.5 semitones.

Although different parameters are set for the proposed
and the baseline methods in order to produce these curves,
the comparison is meaningful, since, in practice, each of the
parameters designates the strictness of the point selection
method. From the curves, it is evident that the proposed
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Fig. 1: The Precision/Recall curves of the proposed (solid)
and the MPD (dashed) methods in creating sets of TFR points
related to the melodic content. As shown in the top figure, the
points correspond to different rmin values for the proposed
method, in the range 0.3 to 0.8, and different A values for the
MPD method, in the range 0.5 to 0.2. The order of the points
is the same in the subsequent figures.

method is much more precise that the baseline in selecting
TFR points that are related to the melody line.

In addition, in order to study the importance of the missed
TFR points, we define the energy recall metric, which is the
spectral energy sum for all the melody points tracked by the
algorithm, divided by the total energy of the signal. In Figure
2, the point precision of the proposed and MPD methods is
depicted, as a function of the energy recall of each method.
We observe that both methods are successful in selecting the
TFR points that bare the most significant amount of energy
of the harmonic components. Furthermore, it is shown that
the MPD method is able to produce higher energy recall mea-
sures, especially in the case of Mirex05. Nevertheless, the
corresponding precision values are too low to yield any use-
ful application.

4.2. Evaluation of the MPC

The post-processed MPC are mapped in a grid as in [23] and
are evaluated with the contour precision/recall and f-measure
metrics, as in [31]. The same evaluation is applied on the con-
tours extracted with the MELODIA 1 vamp plug-in. The com-
parative results are presented in Table 1. As shown there, in
both test datasets the proposed contour extraction method re-
sults in a higher f-measure, than the MELODIA. Particularly,
for the ADC2004 dataset the proposed method improves both
the precision and recall metrics. Although this is not the same
for the Mirex05 dataset, the proposed method is producing
more balanced precision/recall pairs of values, and therefore
results in higher f-measures for both datasets. This is an inter-
esting finding as it means that the selection process that leads

1http://mtg.upf.edu/technologies/melodia
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Fig. 2: The precision/energy recall curves of the proposed
(solid) and MPD (dashed) methods in creating sets of TFR
points related to the melodic content. The points correspond
to different rmin and A values for the MPD method, as de-
scribed in earlier experiment.

Dataset Method Pr Re F

ADC2004 MEL. 0.58 0.7 0.63
Pr. 0.75 0.8 0.76

Mirex05 MEL. 0.48 0.77 0.59
Pr. 0.48 0.73 0.63

Table 1: The contours formed by the MELODIA vamp plu-
gin (MEL.) are compared to those extracted by the proposed
method (Pr.). The average f-measure F is computed over the
f-measure of all the excerpts.

to the pitch contours, i. e., the DRS and the multi-pitch extrac-
tion algorithm, is more successful than the literature method
in retrieving points that are actually related to the melody line.

5. CONCLUSIONS

In this paper, we presented a method that detects the spectral
regions of polyphonic music signals where melodic compo-
nents are active, and groups these components in harmonic
sets of MPC. The use of the RS in the core of the system
provides a set of finely tuned contours that ensure the mini-
mization of errors related to the limitations of the STFT. The
MPC extraction algorithm is based on a dominance weighting
of the TFR data. The experimental activities showed that the
proposed method is superior to the MPD criterion in selecting
points related to the harmonic content of the signal. Further-
more, the produced pitch contours scored a higher f-measure
than a state-of-the-art system. As a next step, we are inter-
ested to incorporate to the proposed method the tracking and
voicing detection modules, in order to extract highly accurate
melody lines from polyphonic music signals.
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