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ABSTRACT

In this paper we present the INESC Key Detection (IKD) system
which incorporates a novel method for dynamically biasing key
mode estimation using the spatial displacement of beat-synchronous
Tonal Interval Vectors (TIVs). We evaluate the performance of
the IKD system at finding the global key on three annotated audio
datasets and using three key-defining profiles. Results demonstrate
the effectiveness of the mode bias in favoring either the major or
minor mode, thus allowing users to fine tune this variable to improve
correct key estimates on style-specific music datasets or to balance
predictions across key modes on unknown input sources.

Index Terms— Audio key estimation, tonal pitch representa-
tion, music signal processing, music information retrieval.

1. INTRODUCTION

Key or tonality is a prominent concept in Western music. It is defined
by a pitch class (tonic) and a mode (major or minor), whose combi-
nation establishes a system of relations between pitches in both the
vertical and horizontal dimensions of musical structure [1]. Key es-
timation from musical audio has been extensively researched within
the music information retrieval community [2, 3, 4], as it provides
important annotations for enhanced navigation and retrieval in large
music collections as well as contributing to music-creative tasks such
as harmonic DJ mixing [5].

However, the majority of existing key estimation systems rely on
the same fundamental principle, that of using key profiles expressing
pitch class distributions to which a similar representation obtained
from analyzing a musical piece or excerpt is compared to estimate
the most probable key. Research on key finding devotes great effort
to the creation and evaluation of different key profiles proposed in
the literature [6, 7, 2]. Yet, these findings must be understood in
the context of the datasets on which they are evaluated, as it has
been shown that different key profiles explicitly favor either major
or minor key modes [8]. Given that the most widely used datasets
in the evaluation of audio key estimation systems have pronounced
divergences in key mode distribution (e.g., a strong bias towards the
major mode in the Beatles collection [9] and the minor mode in the
GiantSteps [3] dataset), we believe this has led to an intrinsic bias
in current key detection systems which are adapted to convey better
estimations in either minor or major modes, but not both. In turn,
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this limits the generality of a particular method in finding the key for
unknown musical inputs.

In light of these findings, we introduce a strategy to explore key
mode estimates of the IKD system [10, 11], a key detection method
based on the Tonal Interval Space [11], without the need to hand-
tune key profiles. The geometric properties of Tonal Interval Space
allow us to easily adapt key mode estimation by introducing spatial
displacements to the input – a non-trivial task in commonly used
metric spaces used in related literature. This not only enables users
to bias the systems towards major or minor correct modes estimates,
which has been shown to be an important feature for style-specific
key detection [4], but can also balance the correct number of esti-
mates across modes for enhanced results on unknown musical in-
puts. We demonstrate the efficacy of our approach by explicitly ma-
nipulating its accuracy on existing annotated datasets comprised of
excerpts in predominantly major and minor modes.

The remainder of this paper is structured as follows. Section 2
provides an overview of the Tonal Interval Space, as well as distance
metrics computed in the space relevant to the IKD system. Section 3
starts by presenting the architecture of our system, followed by a
detailed description of each of the component modules, with partic-
ular emphasis on the novelty of our approach, i.e. the use of mode
bias in the key detection method. Sections 4 and 5 present an objec-
tive evaluation of the IKD system and, finally, in Section 6 we draw
conclusions and state areas for future work.

2. OVERVIEW OF THE TONAL INTERVAL SPACE

The system reported in this paper is based on the Tonal Interval
Space [12], an extended tonal pitch space in the context of the Ton-
netz [13]. The most salient pitch levels of tonal Western music –
pitches, chords and keys – can be represented as unique locations
in the space as Tonal Intervals Vectors (TIVs) from music encoded
as both symbolic or audio data. A predominant feature of the Tonal
Interval Space is the ability to compute theoretical and perceptual as-
pects of Western tonal music, such as indicators of multi-level tonal
pitch relatedness and consonance, as distances.

In this paper, we focus on audio signal representations in the
Tonal Interval Space, due to its relevance in the key estimation sys-
tem under discussion. To represent an audio signal in the Tonal In-
terval Space, we first aggregate the energy of each pitch class in a
12-dimensional chroma vector, c(n), and compute a 12-dimensional
Tonal Interval Vector, T (k) as its L1 normalized Discrete Fourier
Transform (DFT), such that:

T (k) = w(k)

N−1∑
n=0

c̄(n)e
−j2πkn

N , k ∈ Z (1)

where N = 12 is the dimension of the chroma vector and w(k) =
{2, 11, 17, 16, 19, 7} are weights derived from empirical conso-
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nance ratings of dyads used to adjust the contribution of each
dimension k of the space (or interpreted musical interval), making
it a perceptually relevant space in comparison to its non-weighted
version [12]. We set k to 1 ≤ k ≤ 6 for T (k) since the remaining
coefficients are symmetric. T (k) uses c̄(n) which is c(n) nor-
malized by the DC component T (0) =

∑N−1
n=0 c(n) to allow the

representation and comparison of different hierarchical levels of
tonal pitch [12].

The resulting spatial location of tonal pitch in the Tonal Inter-
val Space ensures that configurations understood as perceptually re-
lated within the Western tonal music context correspond to small Eu-
clidean distances [12]. Relevant here are the distances of the 24 ma-
jor and minor TIV keys, which are sparsely and (per mode) equidis-
tantly represented in the space. Neighboring key TIVs adhere to the-
oretical and perceptual relations (e.g., in the neighborhood of each
key TIV, we find its dominant, subdominant, and relative keys) [12].
Furthermore, the set of diatonic pitch classes and chords of each key
are at smaller distances than non-diatonic pitch configurations, al-
lowing us to infer the key TIV from a collection of pitch and chord
configurations. A final property of the space relevant to our study
is the constant vector norm of transposition invariant configurations.
This property indicates that, for example, all major keys are at the
same distance from the center (the same applies to all minor keys).
Additionally, due to the difference of intervallic relations between
major and minor keys, a consistent vector norm difference exists be-
tween these two sets of configurations, thus the ideal binarised TIVs
(containing only the notes of each scale) for harmonic minor keys
are closer to the centre of the Tonal Interval Space than for major
keys.

3. AUDIO KEY ESTIMATION METHOD

Fig. 1 shows the architecture of the IKD system. The first module is
responsible for performing a beat segmentation on a musical audio
input, whose onset times are then used to compute beat-synchronous
TIVs. Given that harmonic changes typically occur on beats [14],
we adopt beat segments as the temporal resolution for representing
the harmonic content, in order to maximize the efficiency of the sys-
tem while minimizing the likelihood of two chords being temporally
merged. The second module introduces a spatial displacement to the
input beat-synchronous TIVs to bias or balance the inference of key
mode based on the vector norm difference between major and minor
keys in the Tonal Interval Space. Finally, the third module computes
the distance between the displaced input TIVs from 12 major and 12
minor TIV key-defining profiles and finds the most probable key as
that with the smallest distance.

Fig. 1. Architecture of the IKD system.

3.1. Beat-synchronous TIV

Given an audio signal (with sampling frequency 44.1kHz), we first
extract chroma vectors using the NNLS chroma [15] plugin within

Sonic Annotator [16] with default parameters, including both tun-
ing correction and spectral whitening. Each chroma vector is calcu-
lated over a 46 ms frame. Next, we extract beat locations from the
same input audio signal, using the QM-VAMP bar and beat tracking
[17] also within Sonic Annotator. To compute the beat-synchronous
chroma vectors we then take the median value per chroma bin across
all frames within each beat, b. Finally, we apply Eq. 1 to compute
the beat-synchronous TIVs.

3.2. Mode Bias

The principal novelty of our key estimation method in comparison
to related template-based key estimation methods is the introduction
of a key mode bias, α, which exploits the vector norm difference
between major and minor key in the Tonal Interval Space. This vari-
able adjusts the location of input beat-synchronous TIVs to favor
key estimates in one of the major or minor modes. This can be better
understood in the 2-dimensional illustration of the key level in the
Tonal Interval Space shown in Fig. 2. When α < 1 we “pull” input
vectors towards the center of the space (i.e., decrease their norm),
thus favoring minor keys estimates. On the other hand, when α > 1
we “push” them towards the edge of the space (i.e. increasing their
norm), thus favoring major keys estimates.

Fig. 2. Illustrative example of the key level in the Tonal Interval
Space mapped into 2 dimensions. Upper and lower case letters rep-
resent major and minor keys, respectively, along with their corre-
sponding vector norm. By altering the norm of an input TIV (repre-
sented as a circle) using different values of α, we show the impact of
the mode bias on key estimates, which oscillates between key modes,
notably the relative C major (for values of α > 1, represented as a
square) and A minor key (for values of α < 1, represented as a
triangle).

3.3. Key TIV Profiles

Fig. 3 shows three key-defining profiles, p, adopted in this study,
which expose the pitch class distribution of the C major and C mi-
nor keys. Their selection was based on their different nature: the
knowledge-based profiles by Temperley’s (T t) [6], the corpus-driven
profiles by Aarden (T a) [7] and Shat’ath (T s) [2], from folk and
electronic dance music (EDM) corpora, respectively. These profiles
are considered here as chroma vectors, c(n), which we convert to
key TIVs using Eq. 1. The key TIVs of remaining keys are com-
puted by rotating the C major and C minor key TIVs, T (k), by
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Fig. 3. The major and minor key profiles for the four set of profiles used: Aarden (T a) [7], Shat’ath (T s) [2], and Temperley (T t) [6] (for
enhanced visualization the profiles were normalized to zero mean and unit variance).

ϕ(r) = (−2πkr)/N radians, where r = [0, 11] semitones. Fur-
ther details on the transposition of pitch configurations in the Tonal
Interval Space by means of TIV rotation can be found in [10].

3.4. Key Estimates as Minimal Cumulative Distances

Based on the assumption that a key-indicating element is the use of
its diatonic pitch set and chords, we define a method for estimating
the global key of a musical example, Rmin, in the Tonal Interval
Space by finding the minimum in a function which accumulates over
time the distances of the total number of query beat-synchronous
TIV, Tb(k), from the 12 major and 12 minor key TIVs, such that:

Rmin = argminr

B∑
b=1

√√√√ 6∑
k=1

∣∣∣Tb(k) · α− T p∗
r (k)

∣∣∣2 (2)

where T p∗
r are 24 major and minor key TIVs, derived from the col-

lection of three different key profiles, p. When r 6 11, we adopt the
major profile and when r > 12, the minor profile. To limit the in-
fluence of silent or noisy (inharmonic) beats, b, we only retain those
for which T (0) > 0.1, where B is the total number of retained beat-
synchronous TIVs. By default, the mode bias α = 1 (i.e. no spatial
displacement to the input beat-synchronous TIVs is introduced) and
can be adjusted to favor one of the two major and minor modes as
detailed in Section 3.2. The system output is a number, Rmin, rang-
ing between 0-11 for major keys and 12-23 for minor keys, where
0 corresponds to C major, 1 to C# major, and so on through to 23
being B minor.

4. EVALUATION

We undertake an objective assessment of the IKD system in esti-
mating the global key from musical audio, focusing on the impli-
cations of the mode biasing strategy on three different datasets and
for three key-defining templates. By adopting different values of α
(both greater than and less than 1) in Eq. 2, we aim to show that:
i) our mode bias can improves performance on either major or mi-
nor modes by increasing and decreasing α, respectively, ii) overall
results on correct key estimates can be improved by adopting a bal-
anced α value, and iii) key-defining profiles have a tendency to priv-
ilege one of the major or minor modes.

We use three audio datasets with key annotations made by ex-
perts in our evaluation. When combined, this collection provides a
total of 879 musical examples, which include heterogeneous genre

and timbre qualities. The first datatset consists of the initial 30
seconds of 96 classical musical examples evenly distributed across
modes and tonics (4 musical examples per key) used in the MIREX
Audio Key Estimation task [18]. The second dataset includes the
first 30 seconds of 179 Beatles’ songs [9], with 89.4% examples in
the major mode. The third dataset is the GiantSteps collection [3],
which consists of the initial 2 minutes of 604 EDM examples across
23 sub-genres, with 84.8% of the data in the minor mode. As dis-
cussed in the introduction, the use of datasets with even mode distri-
bution is an important design decision in the evaluation of systems
for the key estimation on unknown input. While the MIREX training
set fulfills this criterion, the two remaining datasets favor different
modes, which we use as a strategy to understand the behavior of our
mode bias algorithm. To this end, we expect to improve the baseline
results (i.e. when α = 1) on the Beatles and GiantSteps datasets by
increasing and decreasing the α, respectively.

5. RESULTS

Fig. 4 shows the performance of our IKD system on the three
datasets under evaluation, for which we provide a score for α =
[0.05, 20] and across each profile, p, as well. To allow a fair
comparison with previous studies, we use the MIREX evaluation
procedure [19], which is widely applied in key estimation studies,
where correct and neighboring keys estimates are weighted and
averaged into a final score according to the following point assign-
ment: correct (1), dominant/subdominant (.5), relative (.3), parallel
(.2), and others (0).

The most immediate observation we can draw from our results
in Fig. 4 is the effectiveness of the mode bias in regulating the ten-
dency of mode prediction, confirming the expected tendencies on
the evolution of the correct estimates in the Beatles and GiantSteps
datasets shown in Fig. 4 (b) and (c). As the vast majority of musi-
cal examples in the Beatles dataset are in major mode, the ascending
accuracy curve shows the expected improvements for the three key-
defining templates when α increases. Equally, the GiantSteps datat-
set reinforces the mode bias effectiveness by showing the contrary
tendency, i.e. smaller values of α result in better predictions. On the
other hand, the results for the evenly distributed MIREX training set
generate a less asymmetric curve for the same range of α values. The
inflection point for each key profile curve on the MIREX training set
results shown in Fig. 4 (a) can be considered the optimal value of
α, which provides the best, and most balanced key mode, results for
this dataset.
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Fig. 4. Performance of the IKD system for the three datasets under evaluation: a. MIREX training set, b. Beatles, and c. GiantSteps. Each
dataset was evaluated using three key profiles (Aarden (T a) [7], Shat’ath (T s) [2], and Temperley (T t) [6]), on a range of values for the
modes bias α = [0.05, 20].

NS SH FGJH Rekordbox IKD
[20] [2] [4] [21]

Beatles 72.4 59.3 76.0 56.37 65.9
GiantSteps 52.9 59.3 74.6 79.6 68.5
Combined 57.4 59.9 69.3 74.3 67.9

Table 1. Comparison of different key estimation software on the
Beatles and Giantstep datasets. The best score for each dataset is
shown in bold.

Overall, adopting Temperley [6] profile, T t when α = 0.55
gives the best performance for the MIREX training set (91.3% score)
and Shat’ath [2] profile, T s when α = 0.35 provides the best results
for the combined set of the Beatles and GiantSteps datasets (67.9%
score). Combining the two latter datasets indicates which α value
provides the best results for a system to which unknown audio con-
tent input is presented. Moreover, in cases where a known tendency
for one of the modes exists (such as the minor mode in EDM mu-
sic), the system can achieve much better performance (77.1% for the
Beatles dataset and 71.3% for the GiantSteps, when α equals 10 and
0.15, respectively). The best performing α values for all datasets
indicate that the Shat’ath [2] and Temperley [6] profiles without the
mode bias (i.e., when α = 1) favor correct major mode estimates,
where as the Aarden [7] profiles show the opposite behavior.

In Table 1 we present the performance of different systems for
audio key estimation on the Beatles and GiantSteps datatsets re-
ported in [4], to which we include the scores for our IKD system (us-
ing Shat’ath profiles and α = 0.35) and for the Rekordbox [21] soft-
ware on the Beatles dataset. While our system outperforms Noland
and Sandler [20] and Shat’ath [2] systems, it provides worse results
than Rekordbox [21] and Falardo et al.’s systems [4]. We believe
that the poorer performance of our algorithm in relation to the two
latter systems is due to the high optimization of their algorithms for
EDM. Not only is the Tonal Interval Space designed to provide ‘gen-
eral’ inferences for Western tonal music, without being fitted to any
particular style, the NNLS chroma representation used in the IKD
also aims at finding perfectly tuned harmonic pitch templates, which
may not be the case in most EDM and pop/rock music, namely when
using synthesizers. While the performance of Faraldo et al.’s sys-
tem [4] is most accurate across these two datasets, an initial version
of our IKD system outperformed it on the (closed) dataset of 1252
classical music examples from MIREX 2016 Audio Key Detection

task [22].

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an enhanced key mode estimation
on the IKD system using a mode bias strategy, which introduces a
spatial displacement to input TIVs. We demonstrated that the mode
bias not only allows users to favor correct key estimates on one of
the two major or minor modes – relevant for key detection on style-
specific datasets – but also provides a strategy to balance correct key
mode predictions when in the presence of unknown input sources.
The method sheds some light on breaking the computational key es-
timation problem into two parts: one for mode estimation and the
other for tonic estimation. To this end, we envisage our method
could particularly benefit end-users who may be readily be able to
distinguish between major and minor modes, but are unable to in-
fer the root, as well as provide insight into enhanced discrimination
between the two modes at the various hierarchical pitch levels.

The major contribution of this paper and the strength of the IKD
system in relation to related research is its flexibility in correctly es-
timating the key from audio inputs with dynamic control over mode
prediction – a feature that, to the best of our knowledge, has never
been considered before in key detection system other than adjusting
key-defining profiles in an ad hoc manner to fit to existing datasets.
Finally, an important consideration resulting from this study is the
relevance and influence of evenly distributed datasets in the eval-
uation design of key detection systems in order to avoid unsound
conclusions resulting from the tendency of particular key-defining
templates to favor one of the two major or minor modes.

Stylistic instantiations of the current IKD system are planned
for future work towards improving the chroma representation used
to accommodate musical sounds with non-harmonic timbral quali-
ties [23], such as those typically featured in EDM, as well as un-
derstanding the distribution of modes across different musical gen-
res to tune the system for its optimal performance in style-specific
datasets. A style-specific key estimation system that profits from the
IKD mode bias algorithm, must know in advance the bias towards
one of the major or minor modes to provide better key estimates. To
this end, we plan on using timbral features to automatically select α
from the audio signal .
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