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ABSTRACT

In this paper, we discuss the multipitch streaming (MPS) problem
for a multi-source audio signal having interweaving pitch contours.
We propose two approaches to tackle this challenge, one relates to a
feature extracted from the energy levels distributed in multi-channel
recordings for better characterization of the source, and the other
uses particle swarm optimization (PSO) to enlarge the search space
and alleviate the initialization problem in constrained clustering of
the features representing different sources. Experiments on music
and speech samples having highly interweaving pitch contours are
presented to assess its effectiveness.

Index Terms— Multipitch streaming, automatic music tran-
scription, particle swarm optimization, multi-channel

1. INTRODUCTION

In multi-source audio signal processing, recognizing the time-
varying behavior of the fundamental frequencies (F0s) of every
source is a challenging task.1 In the literature of automatic music
transcription (AMT) [1], this problem was solved at different levels,
such as multipitch estimation (MPE) in frame-level, note tracking
(NT) in note-level, and multipitch streaming (MPS) in stream-level
[2]. MPS is particularly related to a number of music and speech
processing problems, including melody tracking, instrument identi-
fication [3], source separation [4], speech recognition [5, 6, 7], and
prosody analysis [8], to name but a few.

In this paper, we study the problem of MPS, which aims to de-
termine the pitch contour of every source based on a known MPE
result, i.e., frame-level pitch estimations. In other words, the main
difference between MPE and MPS is that MPE returns activated
pitches at every time instance, while MPS returns the pitches and
their corresponding source labels. In comparison to MPE, MPS is
complicated by the characteristics of sources, such as the timbre of
different instruments. Therefore, challenges of MPS include silence,
non-pitched sounds, abrupt frequency changes in a stream [2], error
propagation from the MPE result, etc. However, extra complexity of
this problem is introduced by an essential but under discussed issue,
the interwoven streams.

Fig. 1 illustrates what interwoven streams are. The first example
shown in the left of Fig. 1 is one of Bach’s chorales, which has
four streams, and each of them does not cross one another. This is
different from the second example, a three-part country music shown
in the right of Fig. 1, where the pitch contours of vocal and guitar

1In this paper, the term “multi-source signal” refers to a signal generated
by multiple sources including instruments or speakers, with each source as-
sumed to be mono-phonic; i.e., a source only generates one pitch at a time.
With this assumption, a multi-source signal is polyphonic, while a polyphonic
signal is not necessarily multi-source, such as piano solo music, which is be-
yond the scope of our discussion.

Fig. 1. Examples of voice crossing in polyphonic music. Left:
Bach’s Ach Gott und Herr, wie groß und schwer from the Bach10
dataset [11], without voice crossing. Right: MusicDelta Country1
from the MedleyDB dataset [12], with voice crossing.

cross each other three times in a 15-second recording. This so-called
voice crossing phenomenon is avoided in Bach’s composition [9, 10]
and often prohibited in pedagogical composition in music theory,
but is frequently seen in pop or folk music.2 However, in previous
studies, discussion on this issue is quite limited.

The lack of discussion motivates us to investigate how interwo-
ven streams affect the performance of an MPS algorithm, and how
to improve the algorithm in recognizing interwoven streams. On
the basis of the constrained clustering approach [2], we propose
two enhanced schemes: first, since most of the recordings are in
a dual-channel format, we propose a dual-channel feature to better
discriminate different sources by using directional information; sec-
ond, we introduce particle swarm optimization (PSO) [13, 14] into
the constrained clustering method, in order to address the issue of
high sensitivity to initialization of cluster centers. Evaluation is then
performed on a dataset having highly interwoven streams, and the
Bach10 dataset having few interwoven streams, and the results are
compared. The proposed method is shown to be useful for interwo-
ven streams, and particularly useful in dual-channel recordings in
a real-world environment, where the location of a source affects an
energy ratio in both channels.

2. RELATED WORK

An MPS system under our discussion has three inputs: an audio
signal, pitch labels (i.e., the MPE result), and the number of sources.
The system contains mainly two parts: 1) feature extraction, and 2)
streaming. For the feature extraction, most of the previous works
considered pitch-informed, spectral-based features, such as the ac-
tivation matrix from the probabilistic latent component analysis

2In this paper, the terms “voice,” “stream,” “source”, and “pitch contour”
are used interchangeably.
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(PLCA) [15, 16, 17], correlogram [5], cochleagram [6], and the
uniform discrete cepstrum (UDC) [2]. A main challenge in feature
extraction is that the harmonic peaks of the spectra of different
sources tend to overlap with each other, making it difficult to extract
a feature representing a clean source from a multi-source signal.

For the streaming algorithm, previous studies have adopted a
number of supervised or semi-supervised algorithms, such as the
hidden Markov model (HMM) [15, 18], deep neural networks [6],
discriminate PLCA [19], and hidden-Markov random fields (HMRF)
[17]. Besides, there are also unsupervised streaming algorithms be-
ing proposed, such as spectral clustering [17] and constrained clus-
tering [2]. In comparison to a supervised algorithm, an unsupervised
algorithm does not require a multi-track dataset for training, and be-
comes more favorable for the MPS of general types of music. An
unsupervised algorithm is based on an assumption in which simi-
lar features belong to the same stream (i.e., cluster), and resulting
streams are musically meaningful (i.e., constraints of mono-phonic
activation of a source, continuity of a pitch contour, etc.).

We base our work on the system proposed in [2], which uses the
UDC as feature representation and a constrained clustering scheme
in determining the streams. Detailed description of our enhanced
schemes is given in the next two sections.

3. FEATURE EXTRACTION

3.1. The UDC feature

Cepstral features have been widely used in timbre classification [20,
21]. A cepstrum is defined as the inverse Fourier transform (IFT)
of a log-scale spectrum. To extract the feature of one source in a
multi-source signal, the IFT is performed only in the region where
energy of a source is distributed in the spectrum of the multi-source
signal; this is the basic idea of the UDC. More specifically, a log-
amplitude spectrum of the mixture signal a = [a(i)]Ni=1 is located
in the frequency bins f = [ f (i)]Ni=1, N ∈ N, and â = [a(i)]Li=1 and
f̂ =

[
f̂ (i)
]L

i=1 represent a potential subset of the spectrum and the
frequency bins that solely belong to the source of interest. This sub-
set is characterized by the first 50 harmonics of the source from its
given pitch obtained from an MPE algorithm. The UDC is obtained
by computing the cepstrum of this subset:

c =

1
√
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√
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...

...
. . .

...
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...
âL

 ,
(1)

where p is the order of the cepstral representation. In this paper, we
set L = 22. More implementation details of the UDC can be found
in [2] and its source codes provided online (http://www.ece.
rochester.edu/˜zduan/resource/Resources.html).

3.2. The level-ratio feature

Most of the music recordings are in the multi-channel format. For
example, in the scenario of a live concert, sound sources are typically
located at different places on the stage, and are commonly recorded
by two (or more) microphones. In this case, the energy of each
source distributes differently in the two (or more) recording chan-
nels, which provides extra information for identifying the source.
Therefore, we design features for the MPS problem by using chan-
nel information. For a C-channel recording, b(c) = [b(c)(i)]Ni=1 is a

magnitude spectrum, where 1≤ c≤C. A normalized amplitude dis-
tribution for a pitch detection g as l(c) = [b(c)(i)/∑

C
c=1 b(c)(i)]g+m

i=g−m,
where m is a constant, and g is the frequency bin corresponding to
the pitch label. In this work, we set m = 4. A level-ratio feature
derived from the above is represented as

d =
[
l(1), l(2), · · · , l(C)

]
, (2)

where the dimension is C(2m+1). Next, a fusion feature concatenat-
ing a scaled timbre feature c̄ = c/σc and a scaled level-ratio feature
d̄ = d/σd is represented as:

u =
[
c̄, d̄
]
, (3)

where σc and σd are the standard deviation for feature dimensions
of c and d, respectively.

4. CLUSTERING

4.1. Constrained clustering

For an input signal having K sources, a tuple (t, f ,k) denotes a de-
tected pitch activation of a k-th source at a time t and a pitch f ,
where t and f are both positive real numbers, and k = 1,2, . . . ,K.
D represents the number of all pitch activations in one music piece.
To define an one-to-one mapping D : (t, f )activated → {1,2, · · · ,D},
the set of all pitch activations are indexed as p = {p(d)}D

d=1, where
p(d) (or p(t, f )) represents the stream label k of the d-th pitch ac-
tivation at time t and pitch f (i.e., p(d) = k). In this paper, p is
referred to as a stream partition, Sk = {i|p(i) = k} is defined as the
set of all indices of the k-th stream, ud represents the fusion feature
(i.e., Equation (3)) of the d-th pitch activation, and ck represents the
center of the k-th source. Then, the multipitch streaming problem is
solved by minimizing the following objective function:

f (p) =
K

∑
k=1

∑
d∈Sk

‖ud − ck‖2 . (4)

The minimization can be solved by using the well-known K-means
algorithm. Moreover, every (t, f ) in Sk should satisfy two constraints
derived from the domain knowledge of music [2]:

1. Must-link: different sources rarely have the same pitch at the
same time; therefore, a pitch activation different from another
pitch activation in a neighboring frame by less than one semi-
tone should be assigned to the same source as the other pitch
activation.

2. Cannot-link: one source does not perform two pitches at the
same time. Namely, p(t1, f1) and p(t2, f2) should belong to
different clusters if t1 is close to t2, while p1 and p2 are far
apart. Two pitches occurring at the same time must satisfy
this relation. The set of all partitions satisfying this cannot-
link condition is defined as Γ.

After checking the above two constraints against all pitches, a refined
list of constrained pitch candidates is obtained.

4.2. PSO-based constrained clustering

The K-means algorithm suffers a possible convergence to local min-
ima due to its is sensitivity to initialization of cluster centers. Previ-
ous studies suggested pitch order initialization [2], but this method
is not applicable to the case of interwoven streams. Therefore, a
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Algorithm 1 PSO-based constrained clustering.

[INPUT] Feature set of all pitch activations (ui)
D
i=1, number of

particles γ , maximum number of iteration η

[OUTPUT] Optimal partition p ∈ RD

for j = 1, . . . ,γ do
Initialize q(1, j)(d),v(1, j)(d),p( j)

pb (d) ∼ U(0.5,K + 0.5), d =

1, . . . ,D
end for
Initialize pgb(d)∼U(0.5,K +0.5), d = 1, . . . ,D
while i < η do

for j = 1, . . . ,γ do
p(i, j)← argminp⊂Γ ‖q(i, j)−p‖2

p(i, j)← FindNewPartition(p(i, j)) [2]
if g(p(i, j))< g(p( j)

pb ) and f (p(i, j))< f (p( j)
pb ) then

p( j)
pb ← p(i, j)

if g(p(i, j))< g(pgb) and f (p(i, j))< f (pgb) then
pgb← p(i, j)

end if
end if

end for
v(i, j)← v(i, j)+b1φ1(p

( j)
pb −p(i, j))+b2φ2(pgb−p(i, j))

q(i+1, j)← p(i, j)+v(i, j)
end while
p← pgb

different approach called particle swarm optimization (PSO) is em-
ployed in this work. PSO is inspired from behaviors in biological
systems, such as a bird flock or a fish school [13, 14]. PSO solves
a problem by having a population of candidate solutions (i.e., parti-
cles) and optimizing each candidate individually in terms of a fitness
function. The fitness function can be an objective function to the
problem, where the position and velocity of a particle are formulated.
Movement of a particle is influenced by its local best known position,
and also guided toward the best known position in the whole search
space determined by other particles. Therefore, a global solution is
obtained by moving the swarm toward the best position.

We use PSO in solving the constrained clustering problem. In
PSO-based constrained clustering, assume that we have R differ-
ent sets of candidate stream partitions p(1), · · · ,p(R), where p(r) =

{pr(d)}D
d=1 and S(r)k = {i|{pr(i) = k}. Initially, all elements of each

particle (i.e., each stream partition) p(r) are randomly generated in
the interval, [0.5,K +0.5], such that every cluster has the same ran-
dom search space at first. Note that in this stage, each particle is yet
a meaningful stream partition since its values are not integers. If a
particle element value is 3.2, its corresponding pitch can be assigned
to the third cluster. To refine the initialization, the cannot-link con-
straint is first imposed on p(r) by finding the minimum difference
between the particle element values and all possible orderings of the
cluster labels q(r):

p̂(r) = argmin
p(r)⊂Γ

‖q(r)−p(r)‖2 . (5)

This procedure is done by an exhaustive search and generates an
integer-valued p(r). Via (5), the closest cluster labels satisfying the
cannot-links constraints are found and assigned to the pitches at time
t. Then, each candidate is evaluated using two fitness functions, g(p)
and f (p):

1. g(p) outputs a total number of must-link violations. Here,
we apply an additional process used in [2], called swap op-
eration, to trace all pitches and change their stream labels to
the respective clusters, and to check if there is a stream label
better satisfies the constraints and minimizes the total within-
source feature distance at the same time. If the swap operation
finds a better set of stream labels, we update this result to that
particle. Its purpose is to find better must-links.

2. f (p) outputs the sum of the intra-source feature distance rep-
resented as (4).

A locally optimal candidate, ppb, has the best fitness function
value in all iteration steps of that candidate, and a globally opti-
mal candidate, pgb, has the one with the best fitness function value
among all candidates. The direction of optimization (i.e., the veloc-
ity of the swarm) of each particle is therefore defined as follows for
the i-th iteration and the j-th particle:

v(i, j)← v(i, j)+b1φ1(p
( j)
pb −p(i, j))+b2φ2(pgb−p(i, j)) , (6)

where b1 and b2 are two constants, and φ1 and φ2 are two Gaussian
random variables with a zero mean and unit standard deviation. In
this paper, b1 = b2 = 0.2, and we choose γ = 7 particles, five of
which are initialized randomly, one by a simple K-means result, and
one by pitch ordering. The maximal number of iteration η is set to
5. The proposed algorithm is detailed in Algorithm 1.

4.3. Post-processing

We apply two post-processing steps. First, we examine the pitches
against the must-link constraints, and group every 10 frame-level
pitches (i.e., every 0.3s) satisfying the must-link relation into a non-
overlapping segment. We make a vote over the stream labels, and
assign the 10 pitches to the voting result. This is a smoothing pro-
cess which is usually required in refining the frame-level estimation
[22]. Then, if there are still two pitches violating the cannot-link
constraint, we take the pitch farther from the cluster center as a false
positive and remove it.

5. EXPERIMENT AND RESULT

5.1. Data

We collect a dataset consisting of five clips by selecting 2-3 tracks
having highly interwoven streams from several music and speech
datasets (see Table 1). To quantify how much the streams are in-
terwoven in a clip, we consider the number of frames whose stream
labels in pitch order is not equal to the average pitch order of the full
clip; a higher number indicates more interwoven streams. Then, we
define a term named interwoven rate (IR), which is the ratio between
this number and the total frame number in a clip. The IR of each clip
in the “Interwoven” dataset is listed in Table 1.

We also consider the Bach10 dataset, which has ten of Bach’s
chorales played by four different instruments (violin, clarinet, saxo-
phone, bassoon) [11, 2]. The four streams in the dataset interweave
rarely. The average IR of the Bach10 dataset is only 4.761%.

All recordings are sampled at 44.1 kHz. We use a Hamming
window of size 46.4 ms and a hop size of 30 ms for feature ex-
traction. To simulate a room performance recorded by two micro-
phones, all songs are remixed using the open-source room acoustics
simulator Roomsim [23]. For PSO-based clustering, each setting
is repeated for 3 rounds in order to get stable results. We evaluate
the accuracy of MPE using the average frame-level F-score, which
counts the average F-score over all clips and rounds.
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Table 1. The dataset with interwoven streams. The first three clips
are selected from the MedleyDB dataset [12], the fourth is from the
MIREX dataset, and the final from the CHAIN-Corpus [24].

Filename Parts (selected) IR (%)
MusicDelta ChineseJiangNan erhu, guzheng, ruan 12.92
MusicDelta ChineseHenan erhu, guzheng, liuqin 19.18
MusicDelta Country1 vocal, guitar, bass 56.22
MIREX Multi-F0 training data clarinet, horn 30.96
CHAIN-Corpus two male talkers 10.45

Table 2. Comparison of average F scores (in %) over all clips and
rounds for various features and clustering algorithms between the
Bach10 and the Interwoven datasets using ground-truth MPE result.

K-means CC PSOCC

Bach10
UDC 70.63 94.24 94.81
LR 71.82 85.96 86.40

UDC+LR 75.21 92.27 92.64

Interwoven
UDC 59.32 67.63 67.99
LR 72.77 73.55 73.08

UDC+LR 67.06 71.48 71.78

5.2. Result

We perform two MPS experiments. The first one takes the ground
truth pitch annotation as the input, i.e., the result in the MPE stage
is assumed to be perfect. Results are shown in Table 2. We compare
three different kinds of features, including the UDC, the proposed
level-ratio (LR) and the fusion of both (UDC+LR). We also compare
three clustering methods, namely the K-means, constrained clus-
tering (CC) [2] and the proposed PSO-based constrained clustering
(PSOCC) method. Table 2 shows that although LR does not improve
the F-scores with respect to the UDC in the Bach10 dataset (except
for the case of K-means), it outperforms the UDC in the Interwoven
dataset for all cases. In general, the performance of UDC+LR is bet-
ter than the UDC while worse than LR. For the clustering method,
we found that both CC and PSOCC outperform K-means, and the
performance of PSOCC and CC are similar.

The results can be explained by two reasons; first is that the UDC
is pitch-dependent while LR is not, and second is that imposing the
constraints actually prefers not to interweave streams having less dis-
tinguishable features when interweaving of streams actually occurs.
This is why the pitch-dependent UDC outperforms LR in the pitch-
ordered Bach10 dataset, while LR outperformed the UDC in the In-
terwoven dataset. The result of UDC+LR having an intermediate
performance between the UDC and LR again explains that when the
notes are highly interwoven, the MPS task is solved with a trade-off
between feature similarity and the pitch-linking constraints. Com-
paring the clustering method, we found that randomly-initialized
PSOCC performs slightly better than pitch-ordered initialized CC
in both datasets. Although the improvement is marginal, the effec-
tiveness of this clustering scheme is demonstrated under the same
objective function and constraints as CC. In addition, this method
can be further improved in the future by using different number of
particles and velocity parameters in the optimization.

Fig. 2 illustrates the MPS results of a selected clip using baseline
(UDC+CC) [2] and the proposed method ({UDC+LR}+PSOCC).
The major difference between the two methods can be illustrated
with two interwoven streams, vocal and guitar. The baseline method
prefers to keep the pitch order of the streams, namely, keeping the
guitar stream higher than the vocal stream. Conversely, the proposed

Table 3. Comparison of average F scores (in %) between the base-
line and proposed experiment schemes using real-world MPE.

Duan CFP
Baseline (UDC+CC) 55.99 68.89
Proposed ({UDC+LR}+PSOCC) 66.21 68.45

Fig. 2. Illustration of the MPS result of MusicDelta Country1. Top:
Ground truth. Middle: baseline. Bottom: proposed.

method has more flexibility in assigning stream labels by employing
the information of LR, which explains why the proposed method
works effectively in those “voice-crossing” events in the clip.

The second experiment uses the results of real-world MPE al-
gorithms as the input. We consider two MPE algorithms; one is
proposed by Duan et al. [11], and the other is the combined fre-
quency and periodicity (CFP) method [22]. The average F-scores of
MPE on Bach10 dataset are 72.25% for [11] and 76.78% for CFP.
Since both methods have an average F-scores lower than 40% on the
Interwoven dataset, the error of MPE dominates the result. There-
fore, we consider the comparison of MPS on the Interwoven dataset
unreliable, and report only the results on Bach10 dataset, see Table
3. One can observe that, for an MPE result having a lower F-score,
the proposed method performs better. This is mainly because when
frame-level pitch activations are noisy, missing or false alarm pitches
can virtually create a scenario similar to interweaving streams.

6. CONCLUSION

To solve the MPS problem of a multi-source signal having interwo-
ven streams, we have presented the level-ratio feature using direc-
tional information, and also the PSO-based constrained clustering
method providing extra freedom in selecting better solution. Eval-
uation on recordings having either a high or low interwoven rate
gives a promising result, while at the same time reveals a trade-
off between feature similarity and the pitch-linking constraint. The
performance gaps between interwoven streams and non-interwoven
streams, and between ground-truth MPE input and real-world MPE
input also suggest more room for improvement in handling this prob-
lem. Possible future work can target at how to better exploit timbre
and directional information, how to incorporate musical knowledge
into a clustering scheme, and how to control the computational com-
plexity.
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