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ABSTRACT

The task of chord recognition in music signals is often based
upon pattern matching in chromagrams. Many variants of
chroma exist and quality of chord recognition is related to
the feature employed. Chroma Reduced Pitch (CRP) features
are interesting in this context as they were designed to im-
prove timbre invariance for the purpose of query retrieval.
Their reapplication to chord recognition, however, has not
been successful in previous studies. We consider that the de-
fault parametrisation of CRP attenuates some tonal informa-
tion, as well as timbral, and consider alternatives to this de-
fault. We also provide a variant of a recently proposed com-
positional chroma feature, adapted for music pieces, rather
than one instrument. Experiments described show improved
results compared to existing features.

Index Terms— Chromagram, chord recognition

1. INTRODUCTION

Chroma affords a summary feature of the tonal content of a
musical frame in a 12-dimensional pitch class vector [1], and
has been applied for a variety of tasks in the field of music
information retrieval, such as chord recognition [2] [3], key
estimation [4] and query retrieval [5] [6]. A time-chroma
representation, referred to as a chromagram, is often formed
through summation of time-pitch elements that may them-
selves be appropriated through addition of time-frequency
elements. Many chromagram variants have been proposed
which are often differentiated by transforms of the underly-
ing pitch-time representations. Log compression of the pitch
representation was proposed in [7], while a group sparse sig-
nal representation was employed in [8]. A harmonic product
spectrum was employed in [9]. Mauch and Dixon [10] pro-
pose using approximate transcription as the pitch representa-
tion, while recently joint transcription and chord recognition
was performed in [11]. Of particular interest to this paper
are the Chroma Reduced Pitch (CRP)[6] which high-pass
filters the log-compressed pitch vector and a compositional
approach [12] that remodels a chromagram through decom-
position with a dictionary of single note chroma vectors.
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Perhaps the most popular application of chroma is for the
purpose of chord recognition, a task that is generally reduced
to recognition of major or minor classes of chords. A re-
cent paper by Cho and Bello [2] compared many different
chroma variants for this task, using both a learning based ap-
proach with Gaussian mixture models, and template based
chord recognition. Results were given for a basic framewise
classification, and for several filtering approaches of which
it was found that HMM filtering performed best, with GMM-
based classification performing better than the template-based
approaches. It was found that the log compressed chroma-
gram combined with a spectral weighting performed best, and
the importance of the chroma feature in chord recognition was
emphasised, as it was found that pre- and post-processing
steps have little effect on the order of performance relative
to the feature employed. The depth and detail of this pa-
per has led to it being used as a reference for recent chroma
based chord recognition research e.g. [13]. More recently,
the use of deep neural networks has been proposed for the
chord recognition problem [14] [13]. While improvements in
chord recognition are observed using the DNN approaches,
chroma is still a popular, flexible feature, and its semantic
interpretability affords simple template matching approaches
for chord recognition. However, the lack of a reasonable
mechanism for performing no-chord detection with template-
based approaches is noted [2].

Considering the importance of chroma, we revisit vari-
ants of two previously proposed chroma features, the CRP
[6] and the compositional chroma [12] for the task of chord
recognition. We consider different variants of the pitch fea-
ture reduction step for the CRP, which has previously been
reported to perform quite poorly for chord recogntion [2] and
introduce regularisation for the compositional approach [12]
which has not been applied previously on a realistic dataset.
Experimental results show improvement over the baseline log
compressed weighted spectrum chroma which is found to per-
form best in [2].

In the rest of this paper, we first describe a template-
based approach to chord recognition, which mostly adheres
to the methodology used in [2]. We then describe chroma
features, in particular re-introducing the CRP and composi-
tional chroma features, before giving experimental validation.
Finally, we conclude with pointers to future work.
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2. TEMPLATE-BASED CHORD RECOGNITION

A template-based recognition system based, similar to that
employed in [2] is used. Binary chord templates are formed
for each chord simply through setting the pitch classes re-
lating to active notes in a chord to one and setting all other
dimensions to zero. For the major chord the 1st, 5th and 8th
pitch classes are active:

Tmaj = [17 0,0,0,1,0,0,1,0,0,0, O}T

while the minor chord template, 7,,i,,, assigns the 1st, 4rd and
8th pitch classes active. A dictionary, T € R'2*X is con-
structed in which each column, ty, is a chord template formed
by circular shifting of either 7,,,,; or 7,35, With appropriate la-
belling. Classification is performed by simple multiplication
of the templates with the most correlated template selected :

ey

Yn = arg m]iiX tgcn

where c,, denotes the nth frame of the chromagram C &
R'2*N and ~,, is the chord selected at the nth frame.

A probabilistic interpretation of template-based chord
recognition is given in [3]. This is effected by considering
that the minimum measure of fit between a template and a
chroma feature can be expressed as a probability drawn from
an underlying distribution. While Gamma and Poisson distri-
butions are also considered in [3], we employ the Gaussian as
the underlying distribution as initial experiments indicate lit-
tle difference between the different distributions in this regard
in the context of our approaches. Given /5 normalised chroma
vectors and chord templates a likelihood can be assigned

Py, = k) = eltien=D/" )

where ¢~ is a user tunable parameter, in which case, similar
to (1), v, = argmaxy, P(v, = k).

2

2.1. HMM-based smoothing

HMM-based classification is employed as a final step in the
chord recognition system, after normalisation of the likeli-
hoods at each frame. A transition matrix A € RE*K js
formed with diagonal entries [A] x = 1/(1+¢(K —1)), and
homogenous off-diagonal entries [A]y, ; = ¢/(1+¢(K —1)),
where ¢ is a tunable parameter. Similar to [2], the assumption
that A relates the actual transition probabilities is ignored,
and the HMM is considered simply a smoother of the quasi-
probabilities in an optimisation problem. We note that se-
lection of a good value of ¢ is sensitive to the value of o2
employed in the model of fit (2), and also to the particular
chroma feature employed. However, we observe that adapta-
tion of the quasi-probabilistic approach with a suitable value
of o2 selected renders the system less sensitive to the selec-
tion of the value of ¢ than the cosine value based approach
(1) which is seen to be effective only in a small locality of ¢
when employed in [2].
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3. CHROMA FEATURES

As a time-frequency representation, we employ the Constant-
Q Transform (CQT) using [15], producing a magnitude CQT,
Y, with 200ms windows and 50% overlap. A 36 bins per oc-
tave resolution is specified for the CQT from which a pitch
feature, F, is derived by placing a Gaussian window over
three bins centred on the bin of the expected frequency on the
pitch scale as in [2], which we find to be more effective than
the 88-pitched filterbank employed in [16]. Often a power
spectrogram, Y 2!, is employed however it is found that the
use of the magnitude leads to improved chord recognition.
An additive chromagram, C4, can be derived by summing
the magnitudes of the pitch bins over O octaves:

Op

[Clpm = Z[F]erlQo,n

o=1

3)

The log chromagram, C'X, [7] is derived by log compressing
the power pitch spectra before addition (3)

2
i\n

[Fl; 0 ¢ log(1 + a[F]} ./ max[F]7,) )
where o« = 1000 is employed in accordance with [2], which
we also find to be optimal.

A common technique is to employ a spectral weighting,
using a Gaussian window centred on e.g. middle C, or MIDI
note 60, as in [10] and [2], where it is considered an over-
tone removal strategy. Improved chord detection is reported
employing the spectral window with various chroma estima-
tion methods [2]. However, we consider this approach should
be employed with caution as it may be misleading when the
spectral energy is centred significantly lower, or higher than
middle C, although it is probably safe to assume that the tonal

centre of much e.g. pop music is emphasised by this window.

3.1. Compositional Chroma

We proposed a compositional model of chroma [12] that de-
composes an additive chromagram (3) with a dictionary, D €
R12X12 Each column of D is a circularly shifted version of
the chroma vector of a synthesised note containing ten har-
monic partials, in which the amplitude of the nth partial is
given by 0.6". A Powered Euclidean Distance (PED)

e (cpx) = S ((C]1, . — [DX]2, ,)?

m,n

®)

was employed as the cost function in NMF-based regression
to derive the compositional chroma feature X € ]Rj_2 *N PED
is related to [3-divergence through membership of the o3 di-
vergence family [17], with similar error function scaling e.g.
linear scaling is found for § = 21 = 1 [18]. The experi-
ments described in [12] were on a database of MIDI chords,
with improved performance observed for PED relative to (-
divergence, particularly as  — 0. Similar comparison on the



realistic dataset employed here demonstrated a similar pat-
tern. We also introduce a regulariser to the decomposition,
resulting in the cost function CI(,")(C|DX) + A3, 1xall3.
The ¢2 regulariser is selected as this penalises higher values in
X, leading to an inclusive, compressed chroma feature. Opti-
misation of the regularised cost function is performed through
iterations of a monotonic multiplicative update derived using
majorisation minimisation method as in [19] :

DT[Cl @ [DX]n-1] [z=7]

X « X
29| DI DXE ] + 22X

(6)
where ® denotes elementwise multiplication and all exponen-
tiation, X[#, is elementwise.

3.2. CRP features

The Chroma Reduced Pitch (CRP) feature was originally pro-
posed in [6], and was designed in order to provide a timbre-
invariant feature, which was effected through two separate
mechanisms. First, the log compression step (4) is employed,
which itself induces timbre-invariance [7]. Second, a high
pass filter is applied to the pitch vector, based on the premise
that much of the timbral information is present in the lower
frequencies, similar to the approach for MFCCs [6].

The high pass filter in CRP is effected through discard-
ing the lower frequency elements of a DCT applied to the
pitch vector, before reforming the filtered pitch vector. In
particular, a 120 dimensional pitch vector is used, represent-
ing MIDI notes {1, ...,120} although only the dimensions
p € {21,...,108}, representing the notes on a piano, are
populated. This design specification of CRP affords cosine
vectors that repeat on a octave basis, found in the set of di-
mensions O = {21,41,61,81,101, 120} of the DCT dictio-
nary, completing {1, ..., 6} cycles in each octave, respectively.
More specifically, the DCTs in @ = O\{21} possess sub-
octave cycles which emphasise repetitive tonal structure. Al-
though it is moot to explicitly classify a given DCT dimension
as tonal, or timbral, in the given context, it may be considered
that the dimensions in © or O carry predominately tonal in-
formation. In some cases, these dimensions have a strong
relationship with particular tonal intervals, e.g. DCT(61), can
be considered to have a strong relationship to the major 3 in-
terval of four semitones [6], as it repeats 3 times per octave.

Experiments described in [6] focus on the application
of query retrieval, for which timbre-invariance is particu-
larly desirable, and results show that discarding the lower
55 DCT coefficients, referred to as CRP(55), is the op-
timal strategy for this task. However, CRP(55) performs
relatively poorly for template-based and GMM-based chord
recognition [2] [12], although it performs well for this task
using nearest-neighbour classification [12], indicating greater
timbre-invariance. Other CRP variants proposed in [6] em-
phasise the DCTs with sub-octave cycles, @ rather than
employing a high-pass filter. One variant, referred to here as
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Fig. 1. Pitch features for the same audio frame. From top,
Log compressed chroma, CRP(35), CRP(S), CRP(CS).

CRP(CS), incorporates sinusoids at the same frequencies as
the cosine vectors in O in order to account for phase shifting.
Another variant, CRP(S), includes the DCT vectors adjacent
to O in order to approximate phase-shifted cosine vectors.

A large vocabulary of chord classes were employed in ex-
periments in [12] and it was observed, although unreported,
that CRP(55) was extremely inconsistent relative to the dif-
ferent classes of chords examined. Here we consider that this
inconsistency may be due to lower frequency octave-cyclic
components such as DCT(41) being filtered out in CRP(55).
We therefore re-examine CRP(35) [6], which discards the 35
lowest frequency DCT components, and CRP(CS) which uses
the set O of complex sinusoids. We modify CRP(S) to use five
frequency bins centred at each member of 0, e.g. DCT(41)
is represented by DCTs {39, ..., 43}. The effect of DCT(21)
is also considered by testing CRP(15) and variants of CRP(S)
/ (CS) employing the full set of octave repeating DCTs, O,
which we notate here as CRPO(S) and CRPO(CS). While
most chroma features are non-negative, the high-pass filtering
in CRP induces negativity [6], as seen in Fig.1. We apply a
simple linear transform from the range [—1, 1] to [0, 1], which
we observe to effect a slight improvement in template-based
chord recognition when the HMM is used.

A log compressed weighted pitch spectrum and its related
CRP vectors are shown in Fig. 1. It is observed here that the
CRP(35) retains more of the information from the original log
spectrum, with less energy in the zero activity pitch frames



Chroma

[

F | HMM | F(W) | HMM W) |

Add 505 676 56.0 72.7
Log 539 694 58.1 74.4
Comp. 537 705 57.8 745

[ CRP(55) [ 525] 689 [ 564 | 732 |
CRP(15) [ 543 70.6 58.0 743
CRPY(S) | 564 [ 725 585 75.0
CRPY(CS) || 547 ] 1703 58.8 74.9
CRP(35) [ 562 722 60.0 76.0
CRP (S) 579 [ 738 60.2 76.2
CRP(CS) || 564 717 60.5 76.1

Table 1. Overlap score (%) for various chroma features.
F denotes framewise classification, HMM denotes hidden
Markov model, (W) denotes spectral weighting applied.

{1,...,20,109, ...120} than the other variants. Furthermore,
a plateau is seen around MIDI note 70 in the log compressed
pitch vector that is preserved in CRP(35) but not in the other
CRP variants. The pitch vector for CRP(CS), on the bottom,
produces a repeating pattern across its full width, which is to
be expected as it consists only of a few harmonic complex
sinusoids. Meanwhile CRP(S) strikes a middle ground be-
tween the higher reconstruction of the CRP(35) pitch vector
and the emphasis on repetition of the CRP (CS) pitch vec-
tor. As chroma ultimately attempts to capture harmonic rep-
etition, placing less importance on reconstruction relative to
repetition in the CRP(S)/(CS) variants may be useful, with the
potential to e.g. filter out some non-harmonic elements.

4. EXPERIMENTS

Chord recognition experiments comparing the various chroma
methods were performed on the popular Beatles dataset,
which was annotated by Harte [20]. For the compositional
approach the parameters were set to n = 0.05 and A = 0.5.
Classification was performed on the typical maj/min basis
with all minor variants noted as minor and all other chords
denoted as major. Frames with no chord annotations are
ignored, similar to [21]. Comparison is made between an un-
weighted spectrum and a weighted spectrum as this was seen
to create a difference in performance in [2]. Performance is
related in terms of the overlap score, which relates the per-
centage of correctly selected frames. Results are recorded for
unfiltered and HMM filtered approaches. Several values of
the HMM regularisation parameter ¢ were employed and the
optimal results are given for each chroma feature.

The results are shown in Table 1, where it is seen that
the compositional method performs similar to C*, and im-
proves over CRP(55) and C*. The CRP(15) and CRP? vari-
ants improve over all these methods, while the CRP(35) and
associated CRP(S) and CRP(CS) perform the best. Spectral
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| Chroma [[ FOW) [ HMM W) |

[ Log [ 620] 781 |

[ CRP(55) [[ 582 ] 763 |
CRP (15) 61.5 78.3
CRP (S) 61.9 78.8
CRP (CS) 62.0 78.2
CRP (35) 61.4 79.3
CRPY(S) 61.7 79.9
CRPY(CS) 62.1 78.8

Table 2. Results using GMM-based classification of log-
based chroma features in chord recognition experiments.

weighting is seen to have a positive effect on results for all
features. Associated CRPs perform very similarly for the
weighted spectra, however an interesting effect is seen when
the spectra are not weighted in which case the CRP(S) vari-
ants improve over their associated CRPs by around ~ 2%. It
is also noteworthy that in this case the CRP(S) performs al-
most as well as the spectral weighted C*, previously consid-
ered optimal [2], while not requiring the spectral weighting.
This may be particularly advantageous when the tonal profile
of the music is different to that which the window suggests.
It would seem from these results that inclusion of DCT(41) is
required in order to perform template based chord recogntion
well, in which case CRP(55) is not apt. However, the case
of DCT(21) may be less clear cut; while the overlap rate for
CRP(15) and CRPY is less than for the CRP(35)/(S)/ (CS),
the difference in performance is not very large, and further
investigation on more complex chords may be warranted.

Finally, GMM-based classifiers were trained for the
chroma features employing log compression. Training /
test partition was not performed as the intention was solely to
compare the different features. For each chord class, training
was performed using ground truth with all chroma vectors
aligned to the root chord to simulate a larger training set [5].
Five Gaussians were learned for each chord label, as deemed
sufficient in [2]. Weighted spectra and HMM filtering were
employed. The results are shown in Table 2, where a similar
pattern to the previous experiments is seen.

5. CONCLUSIONS

We have presented improved template-based chord recog-
nition using variants of the CRP feature, and introduced
a regularised variant of compositional chroma which per-
formed similar to the previously considered optimal chroma
feature. Possible avenues for future work include employing
prior information to enhance performance, and development
of a no-chord detection system for template-based chord
recognition. Code to reproduce the results is available at
https://code.soundsoftware.ac.uk/projects/crpl7
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