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ABSTRACT

Transcribing the singing voice into music notes is challeng-
ing due to pitch fluctuations such as portamenti and vibratos.
This paper presents a probabilistic transcription method for
monophonic sung melodies that explicitly accounts for these
local pitch fluctuations. In the hierarchical Hidden Markov
Model (HMM), an upper-level ergodic HMM handles the
transitions between notes, and a lower-level left-to-right
HMM handles the intra- and inter-note pitch fluctuations.
The lower-level HMM employs the pitch dynamic model,
which explicitly expresses the pitch curve characteristics as
the observation likelihood over f0 and ∆f0 using a compact
parametric distribution. A histogram-based tuning frequency
estimation method, and some post-processing heuristics to
separate merged notes and to allocate spuriously detected
short notes, improve the note recognition performance. With
model parameters that support intuitions about singing behav-
ior, the proposed method obtained encouraging results when
evaluated on a published monophonic sung melody dataset,
and compared with state-of-the-art methods.

Index Terms— Singing transcription, pitch dynamic
model, music processing

1. INTRODUCTION

We propose a solution to the melody transcription problem
of converting an audio recording of a sung melody (usually
monophonic) to symbolic note representation1. Transcribing
some instruments is easier than others. When dealing with
sung melodies, transcribing audio into an equal-tempered
symbolic representation [1], is made challenging due to three
issues [2]. First, the tuning frequency may vary with each
singer. This deviation from the standard tuning frequency
may cause the entire transcription to be a semitone above
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1Music excerpts of interest are assumed to be map-able to the equal-
tempered chromatic scale, i.e. MIDI scale.

Fig. 1. Example of melody produced by a female singer with
intra- and inter-pitch fluctuations.

or below the ground truth. Furthermore, untrained singers
tend to change the tuning frequency midway through singing.
Second, the singing voice can introduce fluctuations of pitch
within a note, making it difficult to segment and identify
the sung pitch. For example, a singer may sing with a rich
vibrato (wide frequency modulation), causing the system to
transcribe this as two alternating MIDI pitches. Third, the
singing voice often contains portamenti (smooth transitions
between adjacent pitches) or pitch bends. These two features
are often used by singers as a means of being expressive [3].
Fig.1 shows a real example of a sung melody with intra- and
inter-note fluctuations.

Our method employs a hierarchical Hidden Markov
Model (HMM) and a pitch dynamic model that is a two-
dimensional distribution over the f0-∆f0 plane. An HMM-
based singing transcription method was recently proposed
in [4]. Another probabilistic method for finding the optimum
note sequence was proposed in [5]. Dynamic averaging and
hysteresis of the pitch (f0) curve was employed in [1] to
deal with the pitch fluctuations. The pitch dynamic model
has been used to improve query-by-humming [6], to model
singing style [7], and to synthesize singing [8]. To the best
of the authors’ knowledge, the pitch dynamic model has not
been used in singing transcription. This paper proposes a
hierarchical HMM-based sung melody transcription method
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Fig. 2. A flowchart of the proposed method.

that incorporates the pitch dynamic model. This model ex-
plicitly serves as the observation likelihood distribution to
accommodate the pitch fluctuations.

The structure of the paper is as follows: Section 2 presents
the proposed method; Section 3 provides a comparison with
state-of-the-art methods and discussions; and, Section 4 gives
the conclusions and future work.

2. PROPOSED METHOD

The system flowchart of the proposed method is shown
in Fig.2. The tuning frequency is obtained from the f0
output using pYIN [9], and all pitches adjusted accordingly.
This refined f0 is fed into a hierarchical HMM together with
the pitch dynamic model to segment and identify the notes.
Following Viterbi decoding, a spectral flux-based method
separates merged notes and a short-note reallocation method
eliminates extraneous intermediate notes.

2.1. Tuning frequency estimation

As in [5], the method estimates a single tuning frequency for
each excerpt. This is important because singers frequently
sing with different tuning frequencies, more so for untrained
musicians. The method we use simply shifts a melody by a
constant less than 0.5 to the nearest whole number semitone.

To estimate the frequency shift required, we use the nor-
malized histogram of f0, given at one-cent resolution. Peaks
exceeding an arbitrary threshold of 0.3 are selected, starting
with the highest ones. Consecutive peaks added to the list
must be at least 0.75 semitones apart. For each selected peak,
we calculate two tuning frequency deviation values. The first
is the floor deviation, which is the gap from the selected peak
to the largest integer semitone smaller than itself. The second
is the ceiling deviation, which is the gap from the peak to the
smallest integer larger than itself.

The average of the floor and ceiling deviations among
all peaks is used to create two adjusted f0 series: the floor
adjusted f0, ffloor0 , subtracting the floor deviation from the
original f0; and the ceiling adjusted f0, f ceiling0 , adding the
ceiling deviation to the original f0. Note that we only con-
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Fig. 3. Hierarchical hidden Markov model.

sider deviations under one semitone; any gap more than one
semitone will be transcribed to another MIDI note number.
Three inputs, the original f0, ffloor0 , and f ceiling0 are sent as
input to the rest of the system. The one with the highest tran-
scription performance is chosen.

2.2. Pitch dynamic model for note segmentation

Fig.3 shows the hierarchical HMM. The upper level ergodic
HMM models the note transitions. The lower level left-to-
right HMM models the note’s start, sustain, and end states.
These three states each emit the f0 and its corresponding first-
order derivative ∆f0. The model is inspired by [4] and [10];
unlike in existing studies, here the model is intended to ex-
plicitly model the dynamic characteristics of the pitch curve.

Fig.4 illustrates the basic idea behind the pitch dynamic
model used to describe the sung melody dynamic character-
istics. This model expresses the idea that each sung note is
characterized by three distinct tendencies—start, hold steady
(with or without vibrato), and end—each with specific f0-
∆f0 behaviors.

Most often, a sung voice begins on a note other than the
target pitch. This start state forms the beginning of the tran-
sition into the target pitch. When the sung voice enters from
a lower pitch, ∆f0 is positive; when it enters from a higher
pitch, ∆f0 is negative. Hence, the start state always sits in
the second or fourth quadrants2 of the f0-∆f0 plane. Upon
arrival at the target pitch, the pitch curve tends to remain near
the target or oscillate around it. This sustain state models vari-
ations within the target pitch. Oscillations are represented by
circles around the origin in a clockwise direction. When the
singer moves to the next target pitch, the end state models the
outward transition. Since transitions out and in are comple-
mentary, the end state sits in the first or third quadrant (when
moving to a higher or lower pitch, respectively) of the f0-∆f0
plane. Note that the singing can transition in and out either
way.

To mathematically model the pitch dynamics, we create a
novel two-dimensional distribution, which is a combination
of the Gamma distribution and a variant of the von Mises

2The quadrants are numbered anti-clockwise starting from the top right.
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distribution. Given a pair of f0 and ∆f0, the probability of
emitting from MIDI state m is

Fig. 4. Illustration of pitch dynamic model of f0 and ∆f0 in
sung melody.

p(rm, θm) =
e(κ cos(2(θm−µ))−arm)rm

b−1

2πI0(κ)Γ(1 + b)a−b
, (1)

where I0(κ) is the modified Bessel function of order 0, and
rm and θm are the corresponding polar coordinates,

rm =
√

[c(f0 −m)]2 + (d∆f0)2, (2)

cos(θm) =
c(f0 −m)

rm
, (3)

where f0 is the fundamental frequency on the MIDI scale,
∆f0 is the corresponding first-order difference, µ is the rota-
tion angle during the start and end states, c and d are scaling
parameters for f0 and ∆f0, κ is a measure of the distribution
concentrated around the rotating angle µ, a is the measure of
the distribution concentrated around the origin, and b controls
the distances between the peaks and the origin.

2.3. Note refinement

Merged note separation. Since we only use f0 and ∆f0 for
note segmentation, the above model sometimes classifies con-
secutive same-pitched notes (having no or only a small gap
between them) as one single note. A peak in the spectral
change corresponding to an onset serves as the cue to sepa-
rate same-pitched consecutive notes. We use the spectral flux
onset function in [11], which measures the spectral change
over time summed across all frequency bins. When a spectral
flux peaks in the middle of a note, that note is separated into
two notes if each component note is at least 100ms long.

Short note allocation. Compared to melodies played on
other instruments, sung melodies may have more portamenti
or pitch bends at the start and end of each note. If the HMM
enters a start state at the pitch bend, this will result in the ad-
dition of short-length spurious notes. Such spurious notes are
typically identified as notes having durations less than a given
threshold, and pruned [10]. Instead of deleting these notes,
which could introduce onset and offset detection errors, we

re-allocate very short notes to their previous or subsequent
notes by comparing the weights given to these notes as fol-
lows: a neighboring note has a higher weight if it is closer in
time and pitch to the very short note; two standard Gaussian
functions are employed to give weights to these differences
in time and pitch, and the values summed; the short note is
then appended to the previous or subsequent note having the
greater weight.

3. EVALUATION

We evaluated our proposed method using the sung melody
dataset published in [12]. The dataset has 38 sung mono-
phonic music pieces: 11 by adult females, 13 by adult males,
and 14 by children.

3.1. State-of-the-art Methods

We compare our proposed method to four state-of-the-art
methods: Ryynänen [4], Gómez & Bonada [5], SiPTH [1],
and Tony [10]. We use the results for the first three methods as
reported in [12]. Tony’s sensitivity parameter, s, was set to 0.8
and its note pruning threshold was set to 150ms. In addition,
a baseline method—rounding the f0 to the nearest MIDI note
number and using any pitch changes as note boundaries, with
note pruning using a 100ms threshold—provides additional
comparison.

3.2. Parameter Settings

To match the human singing voice, the pitch range of inter-
est was set between MIDI note number 35 (61.74Hz) and 80
(830.61Hz), with integer resolution. As a result, there are
46 states in the upper-level HMM, with a MIDI number for
each state. Without any prior information such as the score or
key, the transition probabilities were set as Gaussian distribu-
tions with the MIDI note’s pitch as mean and 4 MIDI numbers
(semitones) as standard deviation.

To simplify the problem, we make all upper-level HMM
states identical. Each upper-level HMM state is associated
with one lower-level HMM. Each lower-level HMM has an
observation likelihood distributed represented by the pitch dy-
namic model.

For the lower-level HMM state transition probabilities, we
select 0.1, 0.9, and 0.4 as the probabilities for the start, sus-
tain and end state self-transitions, values found through a grid
search for the best parameters matching the training dataset.
Note that the upper- and lower-level HMMs could also be bet-
ter tailored to specific styles.

The parameters for the pitch dynamic model are set as
shown in Fig.5. The start state observation distribution only
exists in the second and fourth quadrants, with the rotating
angle at 135 degrees to the horizontal axis, which corresponds
to the parameter settings: κ = 0.5, a = 0.4, b = 1, c = 1, d =
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Fig. 5. The observation likelihood distribution using the pro-
posed pitch dynamic model for MIDI state 61.

Method Precision Recall F-measure
Baseline 0.254 0.223 0.234
Ryynänen [4] 0.304 0.315 0.308
Gómez & Bonada [5] 0.430 0.373 0.398
SiPTH [1] 0.397 0.440 0.415
Tony [10] 0.510 0.534 0.520
Proposed 0.409 0.436 0.421

Table 1. Note-level evaluation.

1, µ = 3
4π. The end state has the same parameters except µ =

1
4π for a rotating angle of 45 degrees for the first and third
quadrants; a = 0.2 in order to make the distribution more
diffused in order to force the HMM to stay on the upper-level
(MIDI) state. To make the sustain state open to sharp pitch
bends (high ∆f0) and vibratos (low f0 range), its parameters
are set to κ = 0, a = 0.1, b = 1, c = 5, d = 1, µ = 0.

3.3. Results and Discussions

Table 1 presents the precision, recall and F-measure of the
note-level evaluation. Based on [12], we require the onset,
offset, and pitch to be within a narrow threshold in order to
consider a transcription to be successful. More precisely, a
note is considered to be correct if the transcribed onset is
within ±50ms of the ground truth, pitch within ±0.5 semi-
tones of the ground truth, and offset within ±50ms of the
ground truth or result in a duration within ±20% of the
ground truth, whichever is larger.

According to this measure, all methods performed better
than the baseline approach. Tony achieves the best perfor-
mance. The proposed method obtains the second highest F-
measure and is comparable to SiPTH and Gómez & Bonada.

Table 2 shows the error rate for three different error types:
erroneous splits, meaning the ground truth note is split into

Method Split Merged Spurious
Baseline 0.205 0.146 0.057
Ryynänen 0.105 0.248 0.116
Gómez & Bonada 0.140 0.167 0.071
SiPTH 0.074 0.309 0.157
Tony 0.079 0.230 0.112
Proposed 0.064 0.230 0.120

Table 2. Note-level error rate.

a number of separate transcribed notes; merge error refers to
the case where a number of consecutive ground truth notes are
merged into one transcribed note; and, spurious errors refer
to cases where a transcribed note does not overlap with any
ground truth note.

The proposed method obtains the lowest split error rate,
which means that our method is better able to tolerate intra-
note pitch curve fluctuations such as vibratos and unstable
pitches. This may be due to the use of the pitch dynamic
model to handle intra-note pitch fluctuations, and the short-
note allocation procedure in the post-processing stage.

Note that our method, along with Ryynänen and Tony
(which uses a similar HMM note model) and SiPTH, all have
high merged note error rates. One possible explanation is that
all these methods consider only the pitch curve. Consecutive
notes—separate notes having no gap between them, or only
a small one—having the same pitch are very hard to identify
using only the pitch curve. Tony uses an amplitude-based on-
set detection to separate merged notes, while our proposed
method uses the spectral-based onset detection to deal with
this problem. Gómez & Bonada has fewer merged errors as it
aggregates short notes to form longer ones; however, for the
same reason, it has a split error rate higher than other meth-
ods. The baseline has the lowest merged and spurious error
rates because the baseline method considers all pitch changes
to be note boundaries; however, this strategy results in the
highest split error rate.

4. CONCLUSIONS

In this paper, we have presented a pitch dynamic model-based
probabilistic sung melody transcription method. We created
a novel two-dimensional distribution, a combination of the
Gamma distribution and a variant of the von Mises distribu-
tion, to capture the pitch dynamics in singing. This pitch dy-
namic model was applied to a hierarchical HMM. A spectral
flux-based method was used to separate merged notes and a
short note allocation method applied to enhance the results.
Using model parameters that corroborated intuitions about
singing behavior, the proposed model obtained encouraging
results compared to state-of-the-art methods. Future work
will explore the automatic derivation of model parameters for
the pitch dynamic model and the hierarchical HMM.
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