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ABSTRACT

Automatic music transcription is usually approached by us-
ing a time-frequency (TF) representation such as the short-
time Fourier transform (STFT) spectrogram or the constant-
Q transform. In this paper, we propose a novel yet simple
TF representation that capitalizes the effectiveness of spec-
tral flux features in highlighting note onset times. We refer to
this representation as the differential spectrogram and inves-
tigate its usefulness for note-level piano transcription using
two different non-negative matrix factorization (NMF) algo-
rithms. Experiments on the MAPS ENSTDKkCI dataset vali-
date the advantages of the differential spectrogram over the
STFT spectrogram for this task. Moreover, by adapting a
state-of-the-art convolutional NMF algorithm with the differ-
ential spectrogram, we can achieve even better accuracy than
the state-of-the-art on this dataset. Our analysis shows that
the new representation suppresses unwanted TF patterns and
performs particularly well in improving the recall rate.

Index Terms— Music information retrieval, spectral flux,
differential spectrogram, non-negative matrix factorization

1. INTRODUCTION

Automatic music transcription (AMT) aims at transcribing a
musical audio signal into a symbolic representation akin to
the form of a musical score. A great number of algorithms
have been proposed for AMT since the pioneering work of
Moorer [1]. Some researchers focus on audio signal process-
ing and the design of scoring function for pitch detection [2—
5], while others employ machine learning algorithms such as
non-negative matrix factorization (NMF) [6-9], sparse cod-
ing [10, 11], probabilistic models [12, 13] or classification-
based models [14—17] to tackle the problem.

The audio representation adopted in these endeavors is
usually a time-frequency (TF) representation such as the
short-time Fourier transform (STFT) spectrogram or the
constant-Q transform. For example, a widely studied ap-
proach is to use NMF or its variants to decompose a given TF
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representation into two non-negative components: a template
of atoms usually formed by the spectra of musical notes, and
an activation matrix indicating the temporal evolution of the
notes [6]. NMF is an attractive solution partly due to the flex-
ibility and expressivity of its model structure. For example,
it is easy to add regularizers informed by musical knowl-
edge [18-20]. The non-negative assumption also works well
for many TF representations. Although recent years have
witnessed an increasing interest in learning features for AMT
by deep neural networks [17], to date NMF-based methods
still represent the state-of-the-art in many subtasks of AMT,
such as the note-level transcription of piano music [9].

Note-level music transcription requires accurate estimate
of the pitches, onset and offset times of the musical notes
[21]. For transcription of pitched percussive intruments such
as piano, it has been found beneficial to employ instrument-
specific acoustics to model the attack and decay characteris-
tics of the music signal [9,22,23]. However, due to the rich
acoustic variation seen in real world performances, paramet-
ric models of musical acoustics may not always work well.
Moreover, as partials of different pitches overlap in the given
TF representation, notes that are softly played can be easily
missed in the resulting transcription.

Being inspired by the dedicated efforts on musical onset
detection [24, 25], we investigate in this paper a simple yet
relatively less explored idea of highlighting local energy in-
crease in the TF representation for more reliable note-level
transcription. Specifically, we propose a new TF represen-
tation, named differential spectrogram by using the idea of
spectral flux (SF) [24] to emphasize positive energy changes
in the spectrogram, thereby suppressing unwanted energy
fluctuations due to partials, noises or room acoustics. As
the differential spectrogram is non-negative, we also propose
algorithms for note transcription based on existing NMF-
based methods. We validate the advantages of the differential
spectrogram over conventional STFT spectrogram through
experiments with a piano dataset, and discuss its performance
from a signal-level perspective. The experimental results
show that using the proposed approach leads to an onset-
aware (£50ms) F-measure 85.6%, which appears to be the
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best one reported for the MAPS ENSTDKCI dataset [12].

A similar idea is presented in [26], which learned fea-
ture representations for piano note transcription from the rec-
tified first-order difference of semitone-filtered spectrograms
by deep learning techniques. But by virtue of the neural net-
work model it is hard to gain signal-level insights. Moreover,
evaluation on the same dataset suggests that our proposed
method leads to more accurate note-level piano transcription.

In what follows, we review two existing NMF methods
in Section 2, and present the proposed feature representation
and the adapted models in Section 3. Experimental results are
reported in Section 4, followed by conclusions in Secion 5.

2. BASELINE METHODS

Given an input audio signal, most existing NMF-based meth-
ods use the STFT spectrogram as the feature representation
and perform factorization using a pre-learned template from
single-note recordings. Variants of NMF algorithms differ
mainly in the formulation of the factorization model and the
objective function. We consider here the standard NMF al-
gorithm for its popularity and a more advanced convolutional
NMF algorithm designed for note transcription.

2.1. Standard NMF (NMF)

Assuming that the spectrum is a linear combination of some
single-note spectra, NMF tries to approximate the STFT spec-
trogram X y; as the product of two non-negative matrices:

K
Xpo~ Vi =Y WpHy, (1

k=1

where W is the template of single-note spectra, H is the time-
varying activation, K is the number of notes set to 88 in this
work, f € [1, F]and t € [1, T] denote frequency bin and time
frame index, respectively. The distortion D(X|V) is mea-
sured by the S-divergence, which encompasses the Itakura-
Saito (IS) divergence (when 5 — 0), the Kullback-Leibler
(KL) divergence (when 8 = 1) and the Euclidean distance
(when 8 = 2). The parameters W and H are estimated ac-
cording to the multiplicative update rules [7].

NMF can be performed in an unsupervised way, where
both W and H are directly computed from the input spectro-
gram. However, to facilitate pitch estimation based on the
activation patterns, a supervised approach which incorporates
a pre-learned W is preferred [6].

2.2. Attack/Decay Convolutional NMF (CNMF-AD)

A drawback of NMF is that a large number of template atoms
may be needed to account for the rich variation in note in-
tensity and recording environment. This can be circumvented
by employing instrument-specific acoustics with the convo-
lutional NMF (CNMF) model [27] to capture the attack and
decay characteristics of the musical audio, as recently demon-
strated by Cheng et al. for piano music [9]. In this model, the
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STFT spectrogram is assumed to be the summation of two
parts: the attack phase and the decay phase. Mathematically,
it is defined as

K 1T,
Vi = Z Wi, Z Hy, P(t—)
k=1 T=t—T}

K . (2)
3 WAS Hoe e,
k=1 T=1

where W¢ is the percussive template for the attack phase,
W is the harmonic template for the decay phase, P and oy,
are the transient pattern and the exponential decay rate, re-
spectively, and T} determines the range of the transient pat-
tern. Convolving H with P (or the exponential function), the
attack (or decay) activation is obtained and denoted by H?
(or H%). Using the KL divergence for measuring distortion,
the objective is to minimize D(X[V) = > ., d(Xy, Vi),
where d(z,y) = x-log(3) —x +y, for z,y > 0. The param-
eters {W? W¢ H, P, a} are estimated by the multiplicative
update rules derived in [9].

3. PROPOSED FEATURE AND MODEL
ADAPTATIONS

In this section, we describe the proposed feature represen-
tation and its variants, and the adaptations of the aforemen-
tioned NMF models using the new feature representation.

3.1. Differential Spectrogram

Assuming that the intrument exhibits harmonics with locally
stable frqeuencies, the differential spectrogram X (f,¢t) is
defined as:

Xo(f,t) =HWR(X(f,t + L)| = |X(£,0)]),  3)

where HWR stands for the half-wave rectification (HWR(z) =
%‘z‘) and L is a positive integer determining the distance
from the present frame to a preceding one. Figs. 1(a) and
1(b) illustrate two examples where L = 1 and L = 4, re-
spectively. We can see that the differential spectrogram with
larger L is less spotted and the TF patterns around onsets are
emphasized. Fig. 1(c) shows the spectral flux of the same
signal, defined as SF(t) = 2?21 Xr(f,t). We can see
that by increasing the distance, the SF peaks shift towards the
peaks of the mixture signal. These are desirable properties
for capturing the onset charateristics in the note transcription.
For the instruments with oscillatory harmonic frequencies,
a semitone filterbank can be applied prior to the difference
operation to suppress the frequency modulations.

3.2. Model Adaptations
3.2.1. Standard NMF adaptation (NMF-A)

To incorporate the new feature into the standard NMF model,
we can directly replace the spectrogram with the differential
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Fig. 1: Illustration of the proposed differential spectrogram
and the resulting spectral flux curves.

spectrogram. However, there are still many undesirable spots
in the differential spectrogram, as shown in Figs. 1(a)(b).
This significantly deteriorates our attempt to improving note
transcription performance. Therefore, for standard NMF, we
use the following feature to replace X and then follow Eq. (1)
to get the decomposition,

Xp(ft) = el X(f.t) + 2 XL(f.1), )

where 0 < ¢, co < 1 are two scalars to weight the two terms.

3.2.2. Convolutional NMF adaptation (CNMF-A)

To approximate the differential spectrogram, we concentrate
on the attack phase of Eq. (2) where the recurring pattern
is theoretically stable. Specifically, the following model is
utilized to estimate the note activation.

t+T,

ZWfk Z Hk:'r t—T)

T=t—T}

Xp(fit) = Vyy = (5)

Convolving H with P yields the attack activation denoted by
HO. The parameters {\/7\\7, P, H} are estimated by the multi-
plicative update rules derived from Eq. (5), in a similar way
as for (2).

3.2.3. Model initialization (CNMF-AD-A)

Note activation H can be estimated using the adapted model
(5) with random initialization. But in this way, the informa-
tion contained in the decay phase would be completely ig-
nored. Another approach is to intialize it by H estimated us-
ing (2). It is expected that the activation values of some softly
played notes are boosted. In the following, we use CNMF-A
to represent the model (5) with random initialization of H and
CNMEF-AD-A to represent (5) with H intialized by H.
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4. EXPERIMENTS

In this section, we first elaborate the experimental settings,
and then analyze the performance of the proposed approach
with a dataset recorded on a Disklavier piano, using three
state-of-the-art transcription methods for comparison.

4.1. Experimental Settings

As input, the system takes an audio signal with a sampling
rate of 44.1 kHz. We segment frames by a Hamming win-
dow of 4096 samples and a hop-size of 882 samples. With
2-fold zero-padding, 8192-point discrete Fourier transform is
computed on each frame. The spectrogram is smoothed with
a median filter covering 100ms. The update algorithms are
iterated for 50 times. 7} equal to 4 frames. After estimating
H, we employ the strategies proposed in [9] to detect onsets
from H. The threshold O (¢) for peak picking is adapted to
each music piece, expressed as O (1) = 17 ZM ‘H ktem™T
0 maxy, ¢ H ,. In this work, M = 20, 6 = —23dB c =1,
co = 1 for NMF and —29dB for CNMF.

The training set contains the 88 forte isolated note record-
ings in the subset “ENSTDKCI” of MAPS [12]. The test
dataset includes the 30 music pieces from the same subset.
Only the first 30-second excerpt of each piece is used. For
each model, the note activation is fixed according to the
ground-truth and the other parameters are updated in the
training stage. During testing, only the note activation is
updated.

The following evaluation measures are employed: pre-

. . Nip Nip
cision (P = N 4N, ), recall (R = N+ N7n ), F-measure
_ 2PR _ Nip
(F' = $75) and accuracy (A= N TN TN, ), where Ny,

Ny, and Ny, are the numbers of true positives, false positives
and false negatives, respectively. We count a note estimate as
a true positive if the pitch is correct and its onset time is within
50ms of the ground-truth time.

4.2. Result Analysis
4.2.1. System settings

We first investigate the effect of L in Eq. (3). Fig. 2 shows
the results using different distances. We can see that there is
a trade-off between precision and recall when increasing the
distance until it reaches a certain value. Both systems achieve
the best F-measure and accuracy when L = 5.

Comparing Fig. 2(a) with 2(b) demonstrates the effec-
tiveness of the strategy proposed in Sec. 3.2.3. We can see
that initializing CNMF-A with the estimated H of CNMF-
AD can increase both F-measure and accuracy by 1 to 2 per-
cent. However, it is suspected whether the performance im-
provement is due to more iterations for updating H. A simple
test is conducted by initializing H with the first-round esti-
mate and updating it using CNMF-AD for 50 times again. It
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Fig. 2: Results of our methods with different values of L.

Table 1: Performance comparison on “ENSTDkCI”

| Method [P R |F [A |
NMF (8 = 0.5) 59.70 | 34.51 | 41.81 | 27.24
NMF-A (8 = 0.5) 71.04 | 42.48 | 50.70 | 35.13
NMEF (3 = 2) 51.67 | 43.11 | 46.34 | 30.54
NMF-A (8 = 2) 67.83 | 58.21 | 61.76 | 45.10
CNMF-A 82.11 | 86.57 | 83.98 | 73.39
CNMF-AD-A 83.38 | 87.34 | 85.06 | 74.94
CNMF-AD [9] 89.22 | 78.35 | 82.91 | 71.55
Bock [26] - - - 68.70
Berg-Kirkpatrick [13] | 78.10 | 74.70 | 76.40 | —

is verified that using only CNMF-AD does not improve the
performance even with more updating iterations.

4.2.2. Comparison with existing methods

We compare our systems to three state-of-the-art systems
for the note-level transcription: the attack/decay model
(CNMF-AD) [9], the bidirectional Long Short-Term Mem-
ory (BLSTM) recurrent neural network [26], and an unsu-
pervised probabilistic model [13]'. To our knowledge, the
attack/decay model reports the best F-measure and accuracy
on the test dataset thus far.

The results are shown in Table 12. Both CNMF-A and
CNMF-AD-A achieve better F-measure and accuracy rate
than the other systems. Although the standard NMF models
do not yield good performances, it is obvious that replacing
the spectrogram with the feature representation defined in
Eq. (4) significantly increases F-measure and accuracy when
either 3 =0.50r 8 = 2.

To understand the performance enhancgment, the attack
activations, i.e. H® of CNMF-AD and H* of CNMF-A,
are plotted as in Fig. 3. These are the attack activations
from 20 to 28 second of note E4 of the file “MAPS_MUS-
mz_331_3_ENSTDKCI”. We see that the attack activation of

I'The training and testing data are from the same piano for our methods
and CNMF-AD, which does not hold for the other two methods.

2In this paper, the NMF-based method is implemented to illustrate the
effectiveness of the proposed feature. Parameters are not fully tuned.
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CNME-A is more clean and prominent. The false alarms in-
dicated by the purple circles in CNMF-AD are suppressed in
CNMEF-A as well. This illustrates the benefits of using the
differential spectrogram.

To illustrate that exploiting estimated H of CNMF-AD in
the ip\itialization of CNMF-A benefits the estimation, the rolls
of (H*)%- of the two models are shown as in Fig. 4. We can
observe that the roll of CNMF-AD-A contains milder and less
spots than that of CNMF-A, which could be the underlying
reason that the accuracy rate can be further refined.

5. CONCLUSION

In this paper, we have proposed a new time-frequency repre-
sentation called differential spectrogram for polyphonic piano
note transcription. We adapt the standard NMF model and the
attack/decay CNMF model to employ the proposed feature as
their inputs. Evaluations on a piano dataset validate the ef-
fectiveness of our methods. In the future, differential spec-
trogram will be further developed to suppress the undesirable
components in order to remove false alarms. We also plan
to validate the effectiveness of the proposed approach with
datasets of other instruments.

6. ACKNOWLEDGEMENT

We would like to thank Ms. Tian Cheng for her excellent
work [9] and for generously providing her codes.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

7. REFERENCES

J. A. Moorer, “On the transcription of musical sound by
computer,” Computer Music Journal, pp. 32-38, 1977.

A. Klapuri, “Multipitch analysis of polyphonic music
and speech signals using an auditory model,” [EEE
Trans. Audio, Speech, Language Process., vol. 16, no.
2, pp. 255-266, Feb 2008.

C. Yeh, Multiple Fundamental Frequency Estimation of
Polyphonic Recordings, These de doctorat, University
Paris 6 (UPMC), Paris, 2008.

K. Dressler, “Multiple fundamental frequency extrac-
tion for mirex 2012,” in MIREX, 2012.

A. Pertusa and J .M. Ifiesta, “Multiple fundamental
frequency estimation using gaussian smoothness,” in
ICASSP, March 2008, pp. 105-108.

P. Smaragdis and J. C. Brown, “Non-negative matrix
factorization for polyphonic music transcription,” in
WASPAA, Oct 2003, pp. 177-180.

E. Vincent, N. Bertin, and R. Badeau, “Adaptive har-
monic spectral decomposition for multiple pitch estima-
tion,” IEEE Trans. Audio, Speech, Language Process.,
vol. 18, no. 3, pp. 528-537, March 2010.

B. Fuentes, R. Badeau, and G. Richard, ‘“Harmonic
adaptive latent component analysis of audio and applica-
tion to music transcription,” IEEE Trans. Audio, Speech,
Language Process., vol. 21, no. 9, pp. 1854-1866, 2013.

T. Cheng, M. Mauch, E. Benetos, and S. Dixon, “An
attack/decay model for piano transcription,” ISMIR,
2016.

C.-T. Lee, Y.-H. Yang, and H.-H. Chen, “Multipitch es-
timation of piano music by exemplar-based sparse rep-
resentation,” IEEE Trans. Multimedia, vol. 14, no. 3, pp.
608-618, June 2012.

L. Gao and T. Lee, “Multi-pitch estimation based on
sparse representation with pre-screened dictionary,” in
MMSP, 2015.

V. Emiya, VR Emiya, and B David, “Multipitch esti-
mation of piano sounds using a new probabilistic spec-
tral smoothness principle,” IEEE Trans. Audio, Speech,
Language Process., vol. 18, no. 6, pp. 1643—-1654, 2010.

T. Berg-Kirkpatrick, J. Andreas, and D. Klein, “Unsu-
pervised transcription of piano music,” in NIPS, 2014,
pp. 1538-1546.

M. Marolt, “A connectionist approach to automatic tran-
scription of polyphonic piano music,” IEEE Trans. Mul-
timedia,, vol. 6, no. 3, pp. 439—449, 2004.

295

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

G. E. Poliner and D. PW Ellis, “A discriminative model
for polyphonic piano transcription,” EURASIP, vol.
2007, no. 1, pp. 154154, 2007.

J. Nam, J. Ngiam, H. Lee, and M. Slaney, “A
classification-based polyphonic piano transcription ap-
proach using learned feature representations.,” in IS-
MIR, 2011, pp. 175-180.

S. Sigtia, E. Benetos, and S. Dixon, “An end-to-end neu-
ral network for polyphonic music transcription,” ArXiv
e-prints, Aug. 2015.

A. Cont, “Realtime multiple pitch observation using
sparse non-negative constraints,” in ISMIR, 2006, pp.
206-211.

T. Virtanen, “Monaural sound source separation by non-
negative matrix factorization with temporal continuity
and sparseness criteria,” IEEE Trans. Audio, Speech,
Language Process., vol. 15, no. 3, pp. 1066-1074, 2007.

N. Bertin, R. Badeau, and E. Vincent, “Enforcing har-
monicity and smoothness in bayesian non-negative ma-
trix factorization applied to polyphonic music transcrip-
tion,” IEEE Trans. Audio, Speech, Language Process.,
vol. 18, no. 3, pp. 538-549, 2010.

M. Bay, A. F. Ehmann, and J. S. Downie, “Evaluation of
multiple-f0 estimation and tracking systems.,” in ISMIR,
2009, pp. 315-320.

J. Wu, E. Vincent, S. A. Raczynski, T. Nishimoto,
N. Ono, and S. Sagayama, ‘“Polyphonic pitch estima-
tion and instrument identification by joint modeling of
sustained and attack sounds,” IEEE J. Sel. Topics Signal
Process., vol. 5, no. 6, pp. 1124-1132, 2011.

W.-M. Szeto and K.-H. Wong, “A hierarchical bayesian
framework for score-informed source separation of pi-
ano music signals,” in ISMIR, 2015, pp. 155-161.

Miguel A Alonso, Gaél Richard, and Bertrand David,
“Tempo and beat estimation of musical signals.,” in IS-
MIR, 2004.

L. Su and Y.-H. Yang, Power-scaled spectral flux and
peak-valley group-delay methods for robust musical on-
set detection, Ann Arbor, MI: Michigan Publishing,
University of Michigan Library, 2014.

S. Boéck and M. Schedl, “Polyphonic piano note tran-
scription with recurrent neural networks,” in ICASSP,
2012, pp. 121-124.

P. Smaragdis, “Convolutive speech bases and their ap-
plication to supervised speech separation,” IEEE Trans.
Audio, Speech, Language Process., vol. 15, no. 1, pp.
1-12, 2007.



