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ABSTRACT

Recently, time-frequency mask-based beamforming has been exten-
sively studied as the frontend of deep neural network (DNN) based
automatic speech recognition (ASR) in noisy environments. Two
mask estimation approaches have been separately developed for this
beamforming method, namely the the DNN-based approach, which
exploits the time-frequency features of the signal, and the spatial
clustering-based approach, which exploits the spatial features of the
signal. This paper proposes a new method that integrates the two
approaches in a probabilistic way to further improve mask estima-
tion by exploiting the advantages of both approaches. Experiments
using the real data of the CHiME-3 multichannel noisy speech cor-
pus show that the proposed method almost always outperforms the
conventional approaches in terms of word error rate (WER) improve-
ment.
Index Terms: Beamforming, automatic speech recognition, time-
frequency mask, deep neural network, spatial clustering

1. INTRODUCTION

When we capture our speech using distant microphones in our daily
lives, various types of ambient noise are mixed with the captured
signals, and severely degrade the ASR performance. To solve this
problem, beamforming is being extensively studied as the noise re-
duction frontend for ASR. Delay-and-sum beamforming, minimum
variance distortionless response (MVDR) beamforming, and max-
imum signal-to-noise ratio (MaxSNR) beamforming are often em-
ployed [1, 2, 3], and have been shown to improve the ASR per-
formance in tasks ranging from medium vocabulary distant speech
recognition [4] to large vocabulary meeting transcription [5, 6].

An accurate estimation of captured signals’ spatial acoustic
characteristics, such as the spatial covariance matrices of the speech
and the noise, is crucial if we are to make beamforming work effec-
tively. For this purpose, researchers have recently proposed time-
frequency mask-based beamforming approaches [7, 8, 9, 10, 11].
The central idea is to leverage the spectral sparsity of speech sig-
nals by using time-frequency masks that represent the probability
of speech (or noise) dominating the corresponding time-frequency
points [12, 13, 14]. Then, the spatial covariance matrices of the
speech and the noise are estimated solely from the time-frequency
masks and the captured signal, and used for constructing beam-
formers. A feature of this approach is that it can estimate the
beamformers accurately without relying on any assumptions regard-
ing the microphone array geometry or the acoustic conditions of the
room (e.g., a plane wave condition), from short observation of the
order of a few seconds. This is particularly advantageous for many
ASR scenarios using distant microphones.

The two main techniques proposed for mask estimation are the
DNN-based approach and the spatial clustering-based approach.
With the DNN-based approach [10, 11, 15], a DNN is trained in
advance on training data so that it can estimate masks from the
time-frequency features of a single channel noisy speech signal.
Then, the test data from multiple microphones are used to estimate
multiple sets of masks, which are then merged into a single set.
With the spatial clustering based-approach [7, 9, 16, 17, 18], on
the other hand, the masks are estimated from the test data in an
unsupervised learning manner. Assuming that the spatial features
of speech and noise have different distributions, this approach finds
these two distributions based on the clustering of the spatial features,
and the masks are estimated as the posteriors of each cluster at the
corresponding time-frequency points.

Although both approaches have been shown effective, they have
different advantages and disadvantages. In particular, the DNN-
based approach inevitably degrades when there is a mismatch be-
tween the training and test conditions, which is often the case in real
acoustic environments. In contrast, the spatial clustering-based ap-
proach is insensitive to such a mismatch thanks to its unsupervised
learning scheme. So, to make the DNN-based approach more ro-
bust against mismatches, this paper proposes a new mask estimation
method that integrates, in a probabilistic way, DNN-based and spa-
tial clustering based mask estimation. With the proposed method,
initial masks are estimated based solely on the DNN-based approach.
Then, the masks are adapted to the test conditions via the clustering
of the spatial features based on the expectation-maximization (EM)
algorithm, where the initial masks are utilized as the time-frequency
dependent mixture weight of each cluster. The resultant posteriors
of each cluster are determined as the integrated masks. Finally, an
MVDR beamformer is formed based on the estimated masks and
applied to the noisy speech. Experiments using the real data of the
CHiME-3 multichannel noisy speech corpus [20] show that the pro-
posed method almost always outperforms conventional DNN-based
and spatial clustering-based approaches.

In the remainder of this paper, after reviewing existing mask-
based MVDR beamforming in Section 2, the proposed method is
presented in Section 3. Section 4 summarizes related work. Sec-
tions 5 and 6, respectively, provide experimental results and con-
cluding remarks.

2. REVIEW OF MASK-BASED MVDR BEAMFORMING

Figure 1 shows the processing flow of the mask-based MVDR
beamforming method [9] used in this paper. It receives a set of
noisy speech signals captured by multiple microphones and gen-
erates a single enhanced speech signal. The method employs a
time-frequency mask estimator, a steering vector estimator, and an
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Fig. 1. Processing flow of mask-based MVDR beamforming.

MVDR beamformer.

2.1. MVDR Beamformer

The method performs MVDR beamforming in the short-time Fourier
transform (STFT) domain. Let yn,f,m be a signal captured by the
m-th microphone (M ≥ m ≥ 1) at time n (N ≥ n ≥ 1) and
frequency f (F ≥ f ≥ 1). The signals from all the microphones are
represented using vector notation as

yn,f = [yn,f,1, · · · , yn,f,M ]T

where superscript T denotes non-conjugate transposition.
The beamformer applies a linear filter wf to the captured signal

yn,f to produce an enhanced speech signal, ŝn,f , as

ŝn,f = wH
f yn,f

where superscript H denotes conjugate transposition. The filter wf

is an MVDR beamformer [1] when it is determined so that it min-
imizes the power of the beamformer output subject to wH

f rf = 1,
where rf is the estimated steering vector of the speech signal, or the
look direction of the beamformer. It should be noted that other types
of beamformers such as the MaxSNR beamformer [1, 10, 21, 22] are
useful alternatives to mask-based beamforming.

2.2. Mask-based steering vector estimation

The key to successful noise reduction with MVDR beamforming is
the accurate estimation of the steering vector. Conventional MVDR
beamformers often obtain the steering vector assuming that the spa-
tial features of the captured signal obey the plane wave propagation
condition. However, the condition holds only in an ideal anechoic
far-field space, and thus the accuracy of the steering vector estima-
tion deteriorates severely in real acoustic environments.

In contrast, the mask-based approach estimates the steering vec-
tor in a data-driven manner and does not rely on such an erroneous
assumption. Let λ0

n,f be an estimated mask for noise, which repre-
sents the probability of the corresponding time-frequency point be-
ing dominated by the noise, we can estimate the respective spatial
covariance matrices of noisy speech and noise as

R(s+v)
f =

1

N

∑

n

yn,fy
H
n,f (1)

R(v)
f =

1∑
n λ0

n,f

∑

n

λ0
n,fyn,fy

H
n,f (2)

Then, the spatial covariance matrix of the speech is obtained by

R(s)
f = R(s+v)

f −R(v)
f (3)
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Fig. 2. Processing flow of proposed time-frequency mask estimator.

Finally, the steering vector is estimated as the principal eigenvector
of the estimated spatial covariance matrix, R(s)

f .
With the above method, the accuracy of the beamforming clearly

depends largely on that of the mask estimation.

3. PROPOSED MASK ESTIMATION METHOD

Figure 1 shows the processing flow of our proposed mask estimation
method. First, it extracts two different features from the input signal,
i.e., an F -dimensional spectral feature Yn,m at each time n and
microphone m, and an M -dimensional spatial feature Xn,f at each
time-frequency point (n, f). They are respectively defined as

Yn,m = [Yn,1,m, · · · , Yn,F,m]T (4)

Yn,f,m = log |yn,f,m| (5)

Xn,f =
yn,f

||yn,f || (6)

where || · || denotes the Euclidean norm. Next, in the processing
flow, the DNN-based mask estimation receives the time sequence of
the spectral features for all microphones, and estimates the initial
masks at all time-frequency points (n, f). Then, the spatial feature
clustering clusters the spatial features into speech and noise clusters
taking the initial masks into account, and finally estimates the inte-
grated masks as the posteriors of the clusters.

The proposed method employs the likelihood function below as
the optimization criterion for the integration.

L(θSC) = p(X ,Y; θSC, θDNN) (7)

where X and Y , respectively, are sets of features containing all the
spatial and spectral features that are available for the integration, and
θDNN and θSC, respectively, are the model parameter sets of the DNN
and the model for spatial clustering. In this paper, we assume that
θDNN is learned in advance using training data, and θSC is estimated
using the test data. By maximizing the above likelihood, θSC is opti-
mized taking both spatial and spectral features into consideration.

Let dn,f be a binary random variable that represents the dom-
inant source index at a time-frequency point (n, f), which takes
1 when speech dominates the point and takes 0 otherwise. Then,
with proper assumptions on conditional independence over time-
frequency points that are commonly used in the conventional ap-
proaches [23], and disregarding constant terms, the likelihood func-
tion can be rewritten as

L(θSC) =
∏

f

Lf (θ
SC) (8)

Lf (θ
SC) =

∏

n

1∑

d=0

λd,ini
n,f p(Xn,f |dn,f = d; θSC) (9)

λd,ini
n,f = p(dn,f = d|Y; θDNN) (10)
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where eq. (8) decomposes the likelihood function into frequency-
wise functions, Lf (θ

SC). In eqs. (9) and (10), the values λd,ini
n,f for

d = 0 and 1 correspond to the conditional probability of the time-
frequency point being dominated, respectively, by noise and speech
given the spectral features, and are referred to as the initial masks
for noise and speech. Note that λ0,ini

n,f + λ1,ini
n,f = 1. This paper as-

sumes that these values are estimated by the DNN in the proposed
method. p(Xn,f |dn,f = d; θSC), on the other hand, is the conditional
probability density function (pdf) of the spatial features given the
dominant source index, and it corresponds to the pdf of the spatial
features of speech for d = 1 and that of noise for d = 0 according
to the sparsity assumption.

When we look closely at eq. (9), we see that it is in the form of
a mixture distribution model of the spatial features at frequency f ,
where d is a hidden variable, p(Xn,f |dn,f = d; θSC) is a compo-
nent distribution, and λd,ini

n,f is the time-frequency dependent mixture
weight. With this interpretation and employing appropriate compo-
nent distributions, the likelihood function can be efficiently maxi-
mized to a stationary point using the EM algorithm as shown in Sec-
tion 3.3. Finally, with the optimized model parameter set θSC, the
integrated speech masks λd,INT

n,f for d = 0 and 1 are obtained as the
posteriors of the dominant source index.

In the following subsections, we describe the specification of
each processing block in more detail.

3.1. DNN-based mask estimation

Recently, mask estimation based on DNNs has been extensively
studied. Most techniques are developed so that DNNs receive the
spectral features and output the estimate of the masks, and there-
fore can be used for the initial mask estimation of the proposed
method. This paper employs the bidirectional long short-term mem-
ory (BLSTM) based neural network proposed in [10].

The BLSTM network used in [10] is composed of a BLSTM
layer followed by three feed-forward neural network layers. To train
the network, the input is the spectral features defined in eq. (4), and
the desired output is a concatenation of two types of ideal binary
masks, one for speech and the other for noise. The ideal binary
masks for speech (or those for noise) take 1 when the time-frequency
points are dominated by the speech (or noise) and take 0 otherwise.
Note that, to obtain the ideal binary masks, only simulated data can
be used as the training data, from which we can extract the micro-
phone images of speech and noise separately. Then, the output of the
trained BLSTM network can be interpreted as the conditional prob-
ability of the speech and the noise dominating the time-frequency
points given the spectral features, namely p(dn,f = 1|Y; θDNN) and
p(dn,f = 0|Y; θDNN). We use them as the respective conditional
probabilities in the proposed method although they do not necessar-
ily sum to 1.

3.2. Spatial clustering based-mask estimation

With the spatial features in eq. (6), several useful mixture distri-
bution models, including a complex Watson mixture model [7, 17]
and a complex angular central Gaussian mixture model (cACGMM)
[18], have been proposed for spatial clustering-based mask estima-
tion. This paper employs cACGMM because it can yield the same
mask estimates as a complex Gaussian mixture model (cGMM),
which have been shown in [9] to be very useful for mask-based
beamforming. Note that cGMM is a model for multichannel com-
plex Fourier spectra, and thus the conditional independence intro-
duced in eqs. (8) and (9) is not appropriate when we use cGMM.

A component distribution of cACGMM is modeled by a com-
plex angular central Gaussian (cACG) distribution [19], which is de-
fined on a hypersphere as

A(z;B) =
(M − 1)!

2πM detB

1

(zHBz)M
(11)

where z is an M -dimensional complex random variable vector on
the hypersphere, which corresponds to a spatial feature in the pro-
posed method, and B is an M ×M positive definite Hermitian ma-
trix, which is a model parameter of the distribution. Unlike a com-
plex Watson distribution, which can only model the mode and con-
centration of the distribution, the cACG distribution can also model
the shape and rotation of the distribution by B, thus it can better
model the distribution of the spatial features. With cACGMM, two
component distributions with different model parameters at each fre-
quency f , namely B0

f and B1
f , are introduced that correspond to

noise and speech, respectively.
The model parameters of the cACGMM are estimated from the

captured signal in an unsupervised manner based on the EM algo-
rithm, and the masks are estimated based on the optimized parame-
ters. See the concrete estimation steps in [18]. In the following, this
paper describes the estimation steps when they are combined with
the DNN based initial mask estimation.

3.3. Processing steps of integrated mask estimation

With the proposed method, after estimating the initial masks with
the DNN, the model parameters of the component distributions in
eq. (8), or B0

f and B1
f of cACG distributions, can be estimated based

on the EM algorithm using the initial masks as the time-frequency
dependent mixture weights of the cACGMM. The overall processing
steps including the integrated mask estimation can be summarized as
follows.

1. Extract spectral and spatial features, Yn,m and Xn,f , as in
eqs. (4) and (6).

2. Calculate the initial masks, λd,ini
n,f , for d = 0 and 1 using the

BLSTM network trained in advance on training data.

3. Set the initial values of the integrated masks, λd,INT
n,f , for d = 0

and 1 as
λd,INT
n,f = λd,ini

n,f (12)

4. Iterate the following until convergence is obtained.

(a) Update Bd
f for d = 0 and 1 as (M-step)

Bd
f = M

∑
n λd,INT

n,f

Xn,fXH
n,f

XH
n,f

(Bd
f
)−1Xn,f

∑
n λd,INT

n,f

(13)

(b) Update λd,INT
n,f for d = 0 and 1 as (E-step)

λd,INT
n,f =

λd,ini
n,fA(Xn,f ;B

d
f )

∑
d′ λ

d′,ini
n,f A(Xn,f ;Bd′

f )
(14)

4. RELATED WORK

DNN-based mask estimation approaches have been proposed that
use both time-frequency features and spatial features as the input of
the DNN [24, 25]. As the spatial features, [24] employs level differ-
ence, time difference, and cross-correlation over different channels,
while [25] employs masks estimated using spatial clustering. The
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Table 1. WERs (%) obtained using different mask estimators (Mask) and different beamformers (BF) for the CHiME-3 development set
(dt 05) and evaluation set (et 05). Bold fonts indicate the best score for each condition.

simu real

Mask BF Set Ave BUS CAF PED STR Ave BUS CAF PED STR Ave (all)

BLSTM GEV

dt
05

5.23 4.66 7.09 4.53 4.65 4.86 5.68 4.50 4.60 4.66 5.05
BLSTM MVDR 4.47 4.04 5.62 3.86 4.38 4.50 5.53 4.28 4.03 4.17 4.49

cACGMM MVDR 4.99 4.99 6.03 4.56 4.40 4.54 5.92 3.75 4.04 4.47 4.77
Proposed MVDR 4.53 4.20 5.72 3.95 4.26 4.40 5.56 3.94 4.01 4.08 4.46

BLSTM GEV
et

05
6.57 5.53 6.89 7.02 6.85 7.28 8.24 7.28 6.61 7.00 6.93

BLSTM MVDR 5.27 4.52 5.19 5.66 5.70 7.15 9.05 6.95 6.11 6.48 6.21
cACGMM MVDR 6.94 4.99 6.50 7.28 8.97 7.28 9.93 6.63 5.74 6.84 7.11
Proposed MVDR 5.37 4.31 5.29 5.70 6.16 6.71 8.38 6.61 5.81 6.03 6.04

masks estimated with these methods are used for nonlinear noise re-
duction, but have not been tested in combination with mask-based
beamforming to the best of our knowledge.

Another approach has been proposed that integrates the spa-
tial and spectral features for beamforming, where DNNs are used
to model the spectral features and combined with the multichannel
Gaussian model to exploit the spatial information [26]. The model
parameters are estimated by iterative optimization and used to derive
a time-varying multichannel Wiener filter. The approach is devel-
oped for improving the SNR of the signal, but has not yet been well
evaluated in terms of ASR improvement.

5. EXPERIMENTS

The proposed approach is evaluated in terms of the ASR perfor-
mance achieved on the CHiME-3 Speech Separation and Recog-
nition Challenge corpus [20]. The CHiME-3 corpus was created
by using a 6-channel microphone array attached to a tablet device.
The recordings were obtained in four different noisy environments,
i.e., public transport (BUS), cafe (CAF), pedestrian area (PED),
and street junction (STR), and they feature several male and fe-
male speakers, uttering Wall Street Journal (WSJ) [27] sentences.
The corpus is divided into 3 individual subsets, namely a training
set, containing 8738 noisy utterances, a development set (dt 05),
containing 3280 noisy utterances, and an evaluation set (et 05),
containing 2640 noisy utterances. Each subset consists of real and
simulated data, abbreviated as real and simu in the following, where
the latter has been generated by artificially mixing the clean WSJ
utterances with the environmental noise recordings.

5.1. Experimental Setup

We compared three mask estimation methods, namely a DNN-based
method using BLSTM (BLSTM), a spatial clustering-based method
using cACGMM (cACGMM), and a method integrating them both
(Proposed). The same MVDR beamformer (see section 3) [9] and
the same ASR backend (see the next paragraph) were used for com-
parison. For BLSTM, we used a software tool used in [10] and pro-
vided at [28]. BLSTM was trained on simu in the training data and
used for testing. In this paper, we also compared two beamformers
in combination with BLSTM, i.e., the MVDR beamformer and the
generalized eigenvalue decomposition (GEV) beamformer used in
[10, 21]. For cACGMM and the proposed method, the model pa-
rameters of the cACGMM were estimated from each utterance in
the test data and used for the mask estimation, except that the time-

frequency dependent mixture weights were estimated by BLSTM for
the proposed method.

The speech recognizer that we used for the evaluation was based
on a multi-condition convolutional neural network (CNN) acoustic
model and a recurrent neural network (RNN) language model [29]
in addition to a trigram language model. A detailed description of
the system is the same as that of the 1-pass SI system in [30].

5.2. Results

Table 1 summarizes the WERs obtained in the experiments. While
BLSTM with MVDR outperformed the others under all simu con-
ditions except for BUS in et 05, the proposed method outperformed
the others with MVDR under all real conditions except for BUS in
dt 05 and PED in et 05. Note that BLSTM is trained on simu in the
training set, and the mismatch between the training and the simu-
lated test conditions is very small. Thus, the results obtained with
simu suggest that BLSTM is very effective when such mismatch is
very small. In contrast, the results with real suggest that BLSTM
becomes less effective as the mismatch increases, which is often
the case in real acoustic environments. And the integration with
cACGMM can offer good mitigation for the influence of the mis-
match and achieve the best performance. It should also be noted that
the MVDR beamformer used in this paper outperformed the GEV
beamformer in combination with BLSTM under all conditions ex-
cept for real BUS in et 05.

6. CONCLUDING REMARKS

This paper proposed a new time-frequency mask estimation method
that can improve the performance of ASR in noisy environments
when it is used as the ASR frontend in combination with mask-based
beamforming. The proposed method is constructed by integrating
BLSTM-based mask estimation with cACGMM based spatial clus-
tering. By exploiting the discrimination capability of BLSTM and
the unsupervised learning scheme of the spatial clustering, the pro-
posed method achieves mask estimation that is highly accurate and
adaptive to the test conditions. Experiments using the CHiME-3
multichannel noisy speech corpus showed the effectiveness of the
proposed method for real data, which will include a certain mismatch
between the training and test conditions, compared with the conven-
tional approaches in terms of word error rate (WER) improvement.
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