
FULLY COMPLEX DEEP NEURAL NETWORK FOR PHASE-INCORPORATING
MONAURAL SOURCE SEPARATION

Yuan-Shan Lee1, Chien-Yao Wang1, Shu-Fan Wang1, Jia-Ching Wang1, and Chung-Hsien Wu2

1Dept. of Computer Science and Information Engineering, National Central University, Taiwan
2Dept. of Computer Science and Information Engineering, National Cheng Kung University, Taiwan

ABSTRACT
Deep neural network (DNN) have become a popular means of

separating a target source from a mixed signal. Most of DNN-

based methods modify only the magnitude spectrum of the

mixture. The phase spectrum is left unchanged, which is in-

herent in the short-time Fourier transform (STFT) coefficients

of the input signal. However, recent studies have revealed that

incorporating phase information can improve the quality of

separated sources. To estimate simultaneously the magnitude

and the phase of STFT coefficients, this work paper developed

a fully complex-valued deep neural network (FCDNN) that

learns the nonlinear mapping from complex-valued STFT co-

efficients of a mixture to sources. In addition, to reinforce the

sparsity of the estimated spectra, a sparse penalty term is in-

corporated into the objective function of the FCDNN. Finally,

the proposed method is applied to singing source separation.

Experimental results indicate that the proposed method out-

performs the state-of-the-art DNN-based methods.

Index Terms— Deep neural network, phase information

1. INTRODUCTION

The human auditory system can segregate the interested

source form the mxiture. For example, a person can easily

focus on particular instruments when listening to classical

music. Some investigations have demonstrated that the re-

dundancy reduction is essential to mammalian perceptual

processing [1, 2]. This work concerns source separation for

the monaural music signal. Supervised approaches, which

involve prior training [3–7], have recently been intensively

investigated. Huang and Kim introduced a joint optimized

DNN model for monaural source separation [6]. After the

short-time Fourier transform (STFT) coefficients of signals

were extracted, a DNN was used to learn the nonlinear map-

ping between input mixture and target sources. In general,

DNN performed very well for musical signals under unseen

noisy conditions [7].

The DNN-based methods [5–10] typically focus on mod-

ifying only the magnitude response of complex-vauled STFT
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cofficients, leaving the phase response unchanged in the

separation process. However, recent research [11, 12] has

established that the perceptual quality of separated sources

can be improved by enhancing the phase spectrum. This

fact leads some approaches to consider phase information in

source separation [13–15]. Williamson et al. [14, 15] devel-

oped a DNN-based speech separation method which divide

the complex-valued STFT coefficients into real and imag-

inary components. The two real-valued components were

combined into one feature vector. In [16], the magnitude

and phase components are also stacked into a signal vector.

A standard DNN was then employed to learn the connec-

tion between the mixture and the sources in the real domain.

Notably, the inherent structure of complex-valued STFT co-

efficients is changed. The number of neurons in the input and

output layers are doubled. Accordingly, directly learning the

model in the complex domain may be more natural.

In this paper, the source separation problem is addressed

using a fully complex-valued DNN (FCDNN). The proposed

method makes two important contributions. First, the devel-

oped FCDNN directly learns the nonlinear relationship be-

tween input music and target sources in a fully complex do-

main. Accordingly, the inherent structure of complex-valued

data is maintained during the learning process. Second, a

sparse objective for the proposed FCDNN, which enhances

the sparsity of the estimated spectra, is investigated. The rest

of this paper is arranged as follows. Section 2 review the

previous works on DNN-based source separation. Section 3

presents the proposed FCDNN-based source separation in de-

tail. Experimental setting and results are described in Section

4. Section 5 draws conclusions.

2. BACKGROUND

Most DNN-based approaches employ a data-driven scheme

to solve the source separation problem. The DNN is adopted

to supervisely learn the non-linear relationship between the

input mixture and the target mask in the time-frequency do-

main. Given a discrete-time signal x(t) ∈ R that represents

a mixture of P sources, x(t) =
∑P

p=1 sp(t), t ∈ Z
+, the

discrete Fourier transform (DFT) is applied to obtain the
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complex-valued spectrogram of x(t) as

X = STFT (x) = {X(n, k)}n,k∈Ω ∈ C
K×N , n, k ∈ N

(1)

where X(n, k) denotes the complex-valued STFT coefficients

for every frequency bin k and time frame n. The term Ω repre-

sents the domain of (n, k) for 1 � n < N, 1 � k < K . For

simplicity, the subscripts n and k are subsequently omitted.

The STFT coefficients can be further represented as product

of two terms as follows,

X = |X| eiφX ∈ C (2)

where |X| ∈ R represents the magnitude of X , i =
√−1

and φX ∈ R is the phase information in a time-frequency

bin. Similarly, the STFT coefficient of the p-th source can be

represented by Sp = |Sp| eiφSp . In the time-frequency do-

main, the estimated STFT coefficient of source Sp is denoted

as Ŝp. Nowadays, most DNN-based source separation meth-

ods [5–10] focus only on modification of the magnitude term

as follows.

Ŝp = S̄pe
iφX (3)

Herein, φX equals the phase term of the input mixture; S̄p ∈
R denotes the estimated magnitude of Sp, which can be ex-

tracted using the time-frequency mask Mp.

In DNN-based source separation, the ideal ratio mask

(IRM) [5–7] is commonly used to separate the sources, which

can be defined as,

Mp =
|Sp|∑P
p=1 |Sp|

∈ R (4)

The STFT cofficient of the p-th source can be obtained us-

ing Ŝp = MpX . Finally, the separated source is obtained by

applying the inverse short-time Fourier transform (iSTFT) to

Ŝp. However, a recent study [12] has report that the resynthe-

sized spectrogram that is obtained using this manner is incon-

sistent, meaning that Ŝp �= STFT(iSTFT(Ŝp)). Moreover,

the phase estimation of source is not conducted, degrading the

perceptual quality of separated sources.

To incorporate phase estimation into DNN-based source

separation, Williamson et al. [14,15] developed the complex-

valued ideal ratio mask (C-IRM), which is defined as,

MC

p =
Sp∑P
p=1 Sp

=
X�S�

p +X�S�
p

(X�)2 + (X�)2
+ i ·X

�S�
p −X�S�

p

(X�)2 + (X�)2

(5)

where (·)� and (·)� are operators that extract real and com-

plex components, respectively. The C-IRM provides addi-

tional phase information compared to the IRM. In [14] and

[15], the complex-valued STFT coefficients and C-IRM were

firstly divided into real and imaginary components. Then, the

real-valued components were fed into the DNN as the input

and target. Notably, the inherent structure of the complex-

valued features was changed. The DNN weights were real-

valued and could not represent spectral patterns in the com-

plex domain.
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Fig. 1. The architecture of FCDNN for source separation.

3. FCDNN-BASED SOURCE SEPARATION

Unlike previously developed DNN-based methods, the pro-

posed method directly estimates the complex-valued STFT

coefficient of each source. To preserve the structure of

complex-valued STFT coefficients, the FCDNN is devel-

oped to learn the nonlinear relationship between the input

mixture and the target sources in the complex domain. The

concept of complex-valued neural network (CVNN) was

originally proposed in [17] and [18]. The FCDNN that is

developed in this paper is a deeper version of the CVNN. Fig.

1 displays an overview of FCDNN-based source separation.

Specially, the FCDNN operates directly in the complex do-

main. The activations and weights of the FCDNN, which can

be regarded as the spectral pattern of STFT coefficients, are

all complex-valued. Notably, a deeper CVNN has also been

developed to perform a beamforming task [19]. However, its

object function is unconstrained, potentially resulting in an

overfitting model in the complex domain.

3.1. Sparse Model Training

Herein, the goal is to learn a nonlinear mapping from X to

Sp in the complex domain. To train the FCDNN, the STFT

coefficients of the mixture are concatenated into a complex-

valued feature vector for frame n, which is defined as

x(n) = (X(n, 1), X(n, 2), ..., X(n,K)) ∈ C
K , 1 ≤ n ≤ N

(6)

where K is the number of frequency bins, and N is the num-

ber of frames. Similarly, the STFT coefficients of the p-th

source for the n-th frame can be represented by

dp(n) = (Sp(n, 1), Sp(n, 2), ..., Sp(n,K)) ∈ C
K (7)

Given the pair of data {x(n),dp(n)}, the objective function

of the FCDNN can be defined as follows,

E =

N∑
n=1

En =

N∑
n=1

(d(n)− y(n)) (d(n)− y(n))
H ∈ R

(8)
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where y(n) ∈ C
KP is the output of the FCDNN; En is the

n-th partial error term, d(n) = (d1(n),d2(n), ...,dP (n)) ∈
C

KP is the concatenation of the P sources, and H is the Her-

mitian transpose.

Without loss of generality, a two-layer FCDNN is consid-

ered, as shown in Fig. 1. Omitting the frame index n, the j-th

element of can be represented as

yj = x
(2)
j = f(

N1∑
k=1

w
(2)
jk · f

(
a
(1)
k

)
+ b

(2)
j︸ ︷︷ ︸

a
(2)
j

) ∈ C (9)

where a
(1)
k =

N0∑
m=1

w
(1)
kmx

(0)
m + b

(1)
k ; f : C → C is a nonlinear

activation function in the complex domain; x
(0)
k ∈ C denotes

the k-element of the inputs, x
(l)
j ∈ C represents the j-th net-

work outputs, w
(l)
jk ∈ C are the network weights, and b

(l)
j ∈ C

are the j-th network biases for l ∈ {1, 2}. Notably, all of the

network parameters are complex-valued.

The discriminative term [6, 8–10] is commonly incorpo-

rated into the objective function to regularize the reconstruc-

tion error. Unlike such approaches, the method in this work

considers prior knowledge of the inherent sparse structure of

speech signals in the time-frequency domain. Motivated by

the sparse auto-encoder [20], a sparse constraint is further

imposed on the objective function of the FCDNN. Instead

of applying the batch objective function in Eq. (8), the ob-

ject function which is calculated by using n-th sample x(n)
is considered:

Esparse
n = En + β ·

M∑
j=1

DKL (ρ ‖ ρ̂nj) (10)

where ρ̂j =
1
m

∑m
i=1

∣∣∣f(a(l)j )
∣∣∣ denotes the mean activation of

the j-th hidden unit; a
(l)
j is the j-th activation in l-layer; M

represents the number of neurons in the l-layer; ρ is the pre-

defined sparse parameter, and β controls the balance between

the error term and the sparse penalty term. In this paper, l was

set to specify the last layer of the FCDNN.

The first term on the right-hand side of Eq. (10) can be

interpreted as a reconstruction error term and the second term

can be interpreted as a sparse penalty term. The sparse term,

DKL (ρ ‖ ρ̂nj) is the KL divergence between the mean acti-

vation and the pre-defined sparsity that forces a large number

of time-frequency bins to be “inactive” in the estimated spec-

tra. The advantage is that the number of free parameters of

the FCDNN is reduced, ensuring that the model does not find

a poor local minimum during the learning.

3.2. Complex-valued Activation

With respect to the activation function of the FCDNN, the

Liouville theorem [21] states that every bounded function is

constant in the complex domain. Therefore, activation func-

tions that are typically used in real-valued DNNs are not suit-

able for use with the FCDNN. Moreover, the learning prob-

lem in a complex domain is more complicated than that in a

real domain. Based on the impressive result that the rectified

linear unit (ReLU) is easier to learn than conventional acti-

vations [22], a complex-valued ReLU [23] is adopted in the

FCDNN in this paper, and is defined as,

ReLUC(z) =

{
z , φz ∈ [

0, π
2

]
0 , otherwise

(11)

The ReLUC is found herein to be less sensitive to the ini-

tialization of weights than other complex-valued activations,

such as tanh and sigmoid, in the source separation task.

3.3. Error Back-propagation for FCDNN

To train the developed FCDNN for source separation, the

stochastic gradient decent (SGD) is adopted in our work.

Other state-of-the-art back-propagation methods are evalu-

ated in this work, such as the Quasi-Newton method [24],

but they were not as effective as SGD. To update the network

parameters using SGD, the gradient of the n-partial error

term Esparse
n is required. Then, the network parameters can be

updated based on one data point:

θ(τ+1) = θ(τ) +Δθ(τ) = θ(τ) − η
∂Esparse

n

∂θ(τ)
(12)

where θ =
{
w

(l)
jk , b

(l)
k |∀j, k, l

}
is the concatenation of all

network parameters; η is the learning late, and τ is the iter-

ation number. CR-calculus [25] is utilized to calculate the

partial derivative of Esparse
n with respect to complex-valued

parameters. For example, the partial derivative of Esparse
n with

respect to w
(2)
jk can be calculated by,

∂Esparse
n

∂(w
(2)
jk )

= ∂En

∂(w
(2)
jk )�

+ i · ∂En

∂(w
(2)
jk )�

+ β ·
(
− ρ

ρ̂nk
+ 1−ρ

1−ρ̂nk

)
· x∗(1)

k

(13)

Specially, the first term in the right-hand side of Eq. (13) is

derived as

∂En

∂(w
(2)
jk )�

= ∂En

∂y∗
j
· ∂y∗

j

∂a
∗(2)
j

· ∂a
∗(2)
j

∂(w
(2)
jk )�

+ ∂En

∂yj
· ∂yj

∂a
(2)
j

· ∂a
(2)
j

∂(w
(2)
jk )�

= − (dj − yj) f
′
(
a
∗(2)
j

)
x
∗(1)
k − (

d∗j − y∗j
)
f ′

(
a
(2)
j

)
x
(1)
k

(14)

where a
(2)
j = w

(2)
jk x

(1)
k + b

(2)
j ; ∗ indicates the complex con-

jugate operations; f ′ : C → C is the first-order derivative of

the activation function. Similarly, the second term in Eq. (13)

can be obtained:

∂En

∂(w
(2)
jk )�

= (dj − yj) f
′
(
a
∗(2)
j

)(
i · x∗(1)

k

)
− (

d∗j − y∗j
)
f ′

(
a
(2)
j

)(
i · x(1)

k

)
(15)

Finally, given the STFT coefficients of the testing samples,

the STFT cofficients of target sources can be estimated by the

forward pass of FCDNN.
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4. EXPERIMENTS

The effectiveness of the proposed method is experimentally

evaluated on the singing source separation task. The perfor-

mance of source separation that is evaluated using BSS-EVAL

metrics [26], including SIR, SAR, and SDR. Only the vocals

are evaluated. SNRfw [27] and PESQ [28] were used to mea-

sure the quality of separated vocals. In the experiment, 1000

song clips from the MIR-1K database are used [29]. Each

song involves two sources: one is the vocals and the other is

the instrumental music. All of the sound clips are recorded at

a sampling rate of 16 kHz and are between 4 and 13s long. To

generate the training and development set, 175 clips of songs

are selected from MIR-1K. For the testing set, the remaining

825 clips of songs are used. Two sources (P = 2) are mixed

to form the mixture with equal energy.

The spectrograms were generated using a 128-point STFT

with Hamming windows (K = 65). The windows were

shifted relative to each other by one half of the window

length so that they overlapped. The spectra of the mixed clips

are combined with those of the preceding and following five

frames, and then used as the input in the DNN models. This

gave approximately 347715 paired samples (N = 347715)

for training. The architecture of the DNN models is fixed

to 715-2500-2500-130, indicating that the sizes of the input

layer, the two hidden layers, and the two source signals in

the output layer were 715 (65×11), 2500 and 130 (65×2),

respectively. The highest epoch is set to 200. The learning

rates were set to 0.001, 0.001 and 0.0001 for the input-hidden

neurons, the hidden-hidden neurons and the target-hidden

neurons, respectively. For the sparse-constrained FCDNN

(FCDNN-S), the β and ρ were empirically set to 0.005 and

10−8, respectively.

Table 1. Performance comparison between proposed meth-

ods and baseline methods in terms of SNRfw and PESQ.

Methods SNRfw PESQ

Mixture -0.89±1.29 1.22±0.43

IRM 5.36±1.37 1.99±0.41

DNN-M 0.56±1.66 1.45±0.37

DNN-RI 1.65±2.00 1.53±0.33

FCDNN 1.50±1.90 1.50±0.34

FCDNN-S 1.83±2.02 1.59±0.33

To confirm the efficiency of the FCDNN-based methods, a

standard DNN-based method: DNN-M [7], which mainly in-

volve modification of the spectra magnitude, is selected as the

baseline. Since the DNN-M improve only the magnitude re-

sponse of spectra, another state-of-the-art method [14] (DNN-

RI), which jointly estimates the real and imaginary compo-

nents, is also compared to the proposed FCDNN. The size

of the input and output layers in DNN-RI was twice that in

DNN-M DNN-RI FCDNN FCDNN-S
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Fig. 2. Results of source separation using the MIR-1K dataset

by the baseline methods and the FCDNN-based methods.

FCDNN. To ensure a fair comparison, the proposed method

and the baseline methods use the STFT coefficients as time-

frequency features. The DNN-based methods adopt ReLU

as the activation function. Moreover, all methods use ap-

ply the standard SGD to optimize the network parameters.

Fig. 2 shows the experimental results in terms of SIR, SAR

and SDR. Experimental results demonstrate that the proposed

method outperformed the baseline methods in terms of SDR

and SIR. However, FCDNN achieved lower SAR compared

with the baseline methods. Table 1 shows the average per-

formance in terms of SNRfw and PESQ. FCDNN had a bet-

ter PESQ than DNN-M, but its PESQ was similar to that of

DNN-RI. Comparison between FCDNN and FCDNN-S con-

firmed the power of the additional sparse regularization term.

5. CONCLUSIONS AND FUTURE WORK

This work presented a novel FCDNN-based method for

monaural source separation. To incorporate the phase infor-

mation, which ignored by the majority of source separation

approaches, the developed FCDNN is employed to learn the

nonlinear mapping between the input mixture and the target

sources. Unlike conventional DNN-based methods, the pro-

posed method operates directly in the complex domain, and

also provides an intuitive way to deal with complex-valued

signals. Additionally, a sparsity constraint is imposed on

the objective function of FCDNN, enforcing the regularity

of the learned model. Experimental results indicate that the

proposed method has significantly higher SDR and SIR than

two state-of-the-art methods. Moreover, the proposed method

yields better performance on the perceptual quality than the

conventional DNN-based method.
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