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ABSTRACT

A method for constructing deep neural networks (DNNs) for ac-
curate supervised source enhancement is proposed. Attempts were
made in previous studies to estimate the power spectral densities
(PSDs) of sound sources, which are used to estimate Wiener filters
for source enhancement, from the output of multiple beamformings
using DNNs. Although performance improved, it was not possible
to guarantee accurate PSD estimation since the trained DNNs were
treated as black boxes. The proposed DNN construction method
uses non-negative auto-encoders and complementarity subtraction.
This study also reveals that auto-encoders whose weights are non-
negative correspond to non-negative matrix factorization (NMF),
which decomposes source PSDs into non-negative spectral bases
and their activations. It further introduces a complementarity sub-
traction method for estimating PSDs accurately. Through several
experiments, it was confirmed that the signal-to-interference plus
noise ratio improved by approximately 12 dB for datasets captured
in various noisy/reverberant rooms.

Index Terms— microphone array, beamforming, Wiener filter-
ing, deep learning, auto-encoder, non-negative matrix factorization

1. INTRODUCTION

Microphone array signal processing [1, 2] has been used for em-
phasizing a target source in noisy environments for various applica-
tions such as speech recognition-based car-navigation control, noise-
canceling headsets for hands-free communication in very noisy fac-
tories, sports game sound enhancement for broadcast audio render-
ing [3], and clearly picking up distant sound sources [4, 5].

Classical array-signal-processing techniques use spatial cues in-
cluded in the phase/amplitude differences between microphones to
identify a target source. Beamforming [1, 2] is a simple way to
achieve this, but in practical applications, Wiener post-filtering is of-
ten also applied to the beamforming output to further improve source
enhancement. Various studies have attempted to estimate the Wiener
filter by analyzing microphone observation [6]-[10]. Estimating the
power spectral density (PSD) of a target and noise sources is a com-
mon strategy since the Wiener filter can be calculated directly from
the estimated PSDs. In the PSD-estimation-in-beamspace method
[11, 12], PSDs of multiple beamformings are modeled as a simple
linear mixture of source PSDs, assuming that the source signals are
uncorrelated with each other. By solving the mixture using a linear
de-mixing matrix, PSDs of sound sources in the angles of interest
are calculated.

Apart from spatial cues, the spectral characteristics of sources
may also be used to segregate a target source from other sources
[3, 13]. To this end, several previous studies have investigated su-
pervised source enhancement. The application of deep neural net-

works (DNNs) is a recent hot topic in audio signal processing [14]-
[17]. A DNN is known to be a powerful tool for describing the
nonlinear relationships between two different pieces of information,
i.e., input and output feature vectors [18]-[20], and its sophisticated
network parameters can be obtained through back-propagation op-
timization [21] using a huge number of datasets. Our recent stud-
ies [5, 22] attempted to incorporate DNNs into the PSD-estimation-
in-beamspace method, describing the mappings from the PSDs of
multiple beamformings into those of sound sources by using non-
linear DNNs. Experiments showed that the signal-to-interference
plus noise ratio (SINR) could be improved; however, the accuracy
of PSD estimation with the DNN mapping function could not be
guaranteed since the network structure was treated as a black box.

To accurately estimate a Wiener post-filter, we propose a
method of constructing explainable neural networks composed
of a non-negative auto-encoder and complementarity subtraction.
Non-negative matrix factorization (NMF) is a well-known model for
decomposing a spectrogram into spectral bases and their activations
[23]-[27]. Some of the relationships between NMF and DNNs have
been discussed [28]. To incorporate the NMF-based decomposi-
tion model into DNNs, we found that constructing an auto-encoder
[29] while constraining the non-negative network weights may be
appropriate. The PSD of targets/noise can be estimated accurately
by complementarily subtracting non-negative auto-encoder outputs
[30] when they model the spectral characteristics of target/noise
sources independently.

This paper is organized as follows. We explain the conventional
supervised source separation method using DNNs in Sec. 2. In Sec.
3, we introduce the proposed neural network construction method.
After evaluating the proposed method through several experiments
in Sec. 4, we conclude this paper in Sec. 5.

2. CONVENTIONAL METHOD

2.1. Wiener filtering-based source enhancement

Assume that an M (≥ 2)-sensor microphone array and K sound
sources are placed in an acoustic field. The direction of a target
source is assumed to be given, whereas any information about other
sources, i.e., interfering noise, are unknown a priori. The transfer
functions between the K sound sources and M microphones are de-
noted as Aω∈CM×K , where ω denotes the frequency index. When
the time-frame index is described as τ , K source signals are denoted
as sω,τ ∈ C

K×1, and background noise at the microphones is de-
noted as nω,τ ∈CM×1. The M observed signals xω,τ ∈CM×1 are
modeled in the time-frequency domain as

xω,τ = Aωsω,τ + nω,τ . (1)
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When the filter of a beamforming for emphasizing the target
source is represented as hω∈CM×1, the output signal of the beam-
former Yω,τ is given by

Yω,τ = hH
ωxω,τ , (2)

where H denotes the Hermitian transpose. As an implementation of
hω, the minimum variance distortion-less response (MVDR) method
[31] may be used. To boost noise reduction, the Wiener post-filter
Vω,τ is multiplied by Yω,τ as

Zω,τ = Vω,τYω,τ . (3)

To achieve effective source enhancement, Vω,τ needs to be accu-
rately estimated by analyzing xω,τ .

2.2. Wiener post-filter estimation using DNNs

In the PSD-estimation-in-beamspace method [11, 12], L (≥ 2)
beamformers are used for acoustic field analysis. One beamformer
is designed to point its mainlobe to the target sound source, whereas
the rest are focused on other sources. Assuming that source signals
are mutually uncorrelated in every frequency band, the relationships
between the PSDs of beamforming outputs ΦYω ∈RL×1 and those
of source signals grouped into N angular regions ΦGω ∈ R

N×1

are approximated with a linear mixture model using a matrix of the
beamformers’ gain Dω∈RL×N ,

ΦYω ≈ DωΦGω . (4)

When the sparseness of sound sources in the time-frequency domain
can be assumed, equality will hold for the relationship between the
instantaneous PSD of the beamformers’ output and sound sources at
frame τ

ΦYω,τ = DωΦGω,τ . (5)

By solving the inverse problem linearly, as in (6), the power spectra
of grouped sound sources are estimated by

Φ̂Gω,τ = (Dω)
† ΦYω,τ , (6)

where † denotes the matrix inverse operator when L=N ; otherwise,
it denotes the pseudo-inverse. Although the details are omitted, the
Wiener post-filter is calculated after estimating the power spectra of
target φSω,τ and that of noise φNω,τ as

Vω,τ =
φ̂Sω,τ

φ̂Sω,τ + φ̂Nω,τ

. (7)

Since the sparseness assumption may not always hold in practice,
which would cause errors to appear in the estimated Wiener post-
filter, modeling the relationship as a nonlinear mapping as

{φ̂Sω,τ , φ̂Nω,τ } ←M
(
ΦYω,τ

)
, (8)

may provide a better estimate of the PSDs, whereM(·) represents
a nonlinear mapping function. This was implemented using DNNs
in our previous studies [5, 22]. In those studies, a large number of
datasets composed of inputs ΦYω,τ and outputs {φSω,τ , φNω,τ }were
given as supervisors, and the network parameters were optimized
through back propagation [21].

In these previous studies [5, 22], the estimated DNN mapping
function was treated as a black box because the network size, i.e., the
number of layers and nodes, and input/output features were heuris-
tically determined, network parameters were randomly initialized,
and features were normalized to follow a normal distribution. Thus,
it was difficult to trace whether the optimized DNN mapping func-
tion could provide an accurate estimate of the Wiener post-filter.
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Fig. 1. Processing flow of proposed method

3. PROPOSED METHOD

To construct DNNs for accurately estimating Wiener post-filters, we
propose a method of constructing explainable neural networks based
on PSD estimation. Figure 1 shows the processing flow of the pro-
posed method. The constructed neural networks are composed of
non-negative auto-encoders to model the spectral characteristics of
target/noise sources, as explained in Sec. 3.1, and complementarity
subtraction for estimating the power spectra of target/noise sources,
as explained in Sec. 3.2. The supplemental information for network
optimization is discussed in Sec. 3.3.

3.1. Modeling of target/noise-source spectral characteristics us-
ing nonnegative auto-encoders

We now explain our neural network construction method for model-
ing the spectral characteristics of target/noise sources. The NMF is a
well-known source-separation technique and is specifically applied
to single-channel input signals. In the NMF framework, a mixture
spectrogram S ∈ R

Ω×Υ is decomposed into non-negative spectral
bases B∈ R

Ω×β and their non-negative activations A∈ R
β×Υ,

S = BA, (9)

where Υ, Ω, and β are the number of time-frames, that of frequency
bands, and that of spectral bases, respectively. Although there are
many types of norm standards [23, 26], A and B are iteratively op-
timized to satisfy (9).

Similar to the NMF framework, the idea of decomposing a spec-
trogram into spectral bases and activations can be represented using
neural networks. The simplest way to achieve this idea is to con-
struct a 3-layer non-negative auto-encoder. To model the spectral
characteristics of target/noise sources independently, 2-layered input
vectors are organized as

q
(1)
S = [φ̄YS1,τ

, . . . , φ̄YSΩ,τ
]T, (10)

q
(1)
N = [φ̄YN1,τ

, . . . , φ̄YNΩ,τ
]T, (11)

where T denotes transposition. The term q
(1)
N ∈ R

Ω×1 is used for
modeling target sources, which is composed of the output PSD of
a beamformer that focuses on the target source angle φ̄YSω,τ

. Like-

wise, q(1)
N ∈ R

Ω×1 is used for modeling noise sources, which is
composed of the output PSD of beamformers φ̄YNω,τ

. Note that the

elements in q
(1)
S ∈ R

Ω×1 and q
(1)
N ∈ R

Ω×1 are normalized by the
beamformers ’gain. Although more than one noise source may be
assumed in the noise-source model, we only consider a single noise
model in this paper to investigate noise reduction performance with
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the simplest implementation. Thus φ̄YNω,τ
is calculated by averag-

ing L−1 noise-reference beamforming outputs. When the n-th layer
input vector is denoted as q(n) as a general form, it is calculated re-
cursively as

u(n) = W(n)q(n−1) + b(n), (12)

q(n) = f (n)
(
u(n)

)
, (13)

where W(n) and b(n) denote the weight matrix and bias vector of
the n-th layer, respectively. The network parameter p is composed
of an N -layer of weight matrices and bias vectors. As an activation
function f(n)(·), the rectified linear unit (ReLU) is used because it
makes network outputs non-negative

f (n)(u) = max(0, u). (14)

By regarding {W(2)
S ,W

(2)
N } ∈ R

β×Ω as β sets of spectral
bases of target/noise sources, its elements are constrained to be
non-negative as follows:

W
(2)
S,i,j ≥ 0 (∀ i, j), (15)

W
(2)
N,i,j ≥ 0 (∀ i, j), (16)

where W
(n)
S,i,j denotes the (i, j)-th elements of W

(n)
S . Then, the

second-layer input for the target model q(2)
S ∈Rβ×1 and noise model

q
(2)
N ∈Rβ×1 can be regarded as non-negative activations correspond-

ing to each spectral basis at a time-frame. By replacing the weight
matrix in the 3rd layer with the transposed weight matrix in the 2nd
layer, as in (17) and (18), the spectrogram is reconstructed since
activations {q(2)

S ,q
(2)
N } and spectral bases {W(3)

S ,W
(3)
N } are mul-

tiplied.

W
(3)
S = W

(2)T
S , (17)

W
(3)
N = W

(2)T
N (18)

Here, {b(3)
S ,b

(3)
N } should be replaced by zero-vectors. The recon-

struction model in (19) and (20) is equal to the single time-frame
NMF model in (9).

q
(3)
S = f (3)

(
W

(3)
S q

(2)
S + b

(3)
S

)
= W

(3)
S q

(2)
S , (19)

q
(3)
N = f (3)

(
W

(3)
N q

(2)
N + b

(3)
N

)
= W

(3)
N q

(2)
N (20)

Through nonnegative auto-encoders, the 3rd-layer inputs q(3) =

[q
(3)T
S ,q

(3)T
N ]T ∈R2Ω×1 may be pre-enhanced power spectra of tar-

get/noise sources. The neural networks whose structure is defined in
(17) and (18) are called auto-encoders [29]. Thus, constructing a 3-
layer nonnegative auto-encoder corresponds to modeling the spectral
characteristics of target/noise sources with the NMF model.

3.2. Complementarity subtraction for estimating power spectra
of target/noise sources

Through 3-layer non-negative auto-encoders, a de-noising effect
may be somewhat obtained. We believe a more noise-reducing
unit is needed to accurately estimate the power spectra of tar-
get/noise sources. In our previous studies on the PSD-estimation-in-
beamspace method [30], we discussed the roles of (Dω)

† defined in
(6). In the beamforming output, although the target source is em-
phasized, its interferences still remain as residual noise. The same
phenomenon may be applicable in de-noising auto-encoder outputs.
We model 3rd-layer inputs by simply adding the ideal power spectra
of target source dS ∈RΩ×1 and that of noise source dN ∈RΩ×1 as
follows:

q
(3)
S ≈ dS + ΓS dN, (21)

q
(3)
N ≈ dN + ΓN dS, (22)

where

dS = [φS1,τ , . . . , φSΩ,τ ]
T, (23)

dN = [φN1,τ , . . . , φNΩ,τ ]
T, (24)

ΓS = diag{[γS,1, . . . , γS,Ω]}, (25)

ΓN = diag{[γN,1, . . . , γN,Ω]}. (26)

Here, ΓS and ΓN are composed of interference-remaining rates for
each frequency band. They are satisfied with 0<γS,ω < 1 and 0<
γN,ω<1.

Although the details on the theory proposed in our previous
study [30] are omitted, the inverse relationships of (21) and (22) can
be modeled approximately if the remaining weights are sufficiently
small.

dS ≈ q
(3)
S − ΓS q

(3)
N , (27)

dN ≈ q
(3)
N − ΓN q

(3)
S (28)

Since the complementarity subtraction in (27) and (28) is described
by a matrix form, it can be embedded in a sequence of DNNs as

W
(4)
Init =

[
IΩ −ΓS

−ΓN IΩ

]
, (29)

where W
(4)
Init ∈R2Ω×2Ω denotes the initial value of that weight ma-

trix, and the structure in (29) is iteratively updated through back
propagation optimization.

Supplementarily, capturing sound using a regular circular mi-
crophone array might be better for accurately estimating the power
spectra of target/noise sources. When such a symmetric microphone
array is used, it enables us to make Dω independently of the target
direction. Then, the noise reduction processes in (27) and (28) are
expected to be optimized independently of the target arrival direc-
tion.

3.3. Implementation of network parameter optimization

We now briefly summarize the optimization process of p.

[Step 1] The spectral characteristics of target/noise sources are
independently modeled with non-negative auto-encoders. To ini-
tialize the spectral bases, the gain-normalized beamforming output
power created when only target/noise sources are inputted (unmixed
datasets) is calculated. By applying k-means clustering, β types
of different spectral characteristics are selected, and they are used
as an initial value of {W(2)

S ,W
(2)
N }. After inserting an unmixed

dataset into {q(1)
S ,q

(1)
N } and {q(3)

S ,q
(3)
N }, back propagation is ap-

plied while constraining network parameters, as in (15)-(18). By
replacing {q(1)

S ,q
(1)
N } with the beamforming output power when

noisy observed signals are inputted (mixed datasets), 3-layer de-
noising non-negative auto-encoders are constructed as a target/noise
source model.

[Step 2] Complementarity subtraction is embedded behind de-
noising non-negative auto-encoders. After initializing the weight
matrix, as in (29), and b(4) is replaced with a zero-vector, the
network parameters of only the 4-th layer are pre-trained through
back propagation. Since q(4) is expected to be composed of the
power spectra of target/noise sources, the cost function for network
optimization is designed by
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Table 1. Parameters used in experiments

# of microphones, M 3
Sampling rate 16 kHz
FFT length 8 ms
# of frequency bands, Ω 50 (ERB scale [32])
# of beamformings, L 3
# of layers, N 4
# of spectral bases, β 320
# of nodes, Jn J1: 2Ω, J2: 2β, J3: 2Ω, J4: 2Ω
# of arrival directions of target 5 (0, 45, 90, 135, 180 deg)
# of background noise level 5 (-10, -5, 0, 5, 10 dB)
# of trials for each condition 100 (training), 20 (evaluation)
# of frames for each signal 499 (4.0 sec)
# of training datasets 1,247,500 (=5*5*100*499)
# of evaluation datasets 249,500 (=5*5*20*499)

Table 2. Evaluation of noise-reduction performances (SINRimp:
SINR improvement, BF: Beamforming, WF: Wiener filtering)

Background noise level [dB] -10 -5 0 5 10
Input SINR [dB] -1.7 -2.2 -3.8 -6.7 -10.6

SINRimp (BF) [dB] 3.2 3.4 4.5 7.0 10.7
SINRimp (Conv. DNN-WF) [dB] 3.8 4.0 4.9 7.2 10.9
SINRimp (Prop. DNN-WF) [dB] 12.3 11.3 12.0 11.8 13.3
SINRimp (Ideal WF) [dB] 17.7 14.7 14.8 14.1 15.0

E(p) =
1

2

〈
‖ q(4)

Ideal − q(4) ‖2
〉
, (30)

where supervised output features are defined by q
(4)
Ideal = [dT

S ,d
T
N]

T.

[Step 3] The N = 4 layers of DNNs are optimized through back
propagation. After the optimization of p, the power spectra of tar-
get/noise sources can be estimated frame-by-frame using the opti-
mized DNNs. By applying the Wiener filter, as in (3), and inverse-
FFT, enhanced signals are obtained, as shown in Fig. 1.

4. EXPERIMENTS

4.1. Experimental conditions

We conducted experiments to investigate the effectiveness of the pro-
posed method. The regular circular array was composed of M=3
omni-directional microphones that were configured as a regular tri-
angle with a diameter of 0.046 m. The array was placed in 8 dif-
ferent situations (= near a wall/center of 4 reverberant rooms), and
recorded room impulse responses, and background noise (e.g., of-
fice and exhibition hall noise) were reproduced from 6 loudspeakers
placed in the corners of the rooms. The target speech was assumed
to arrive from one of five different directions (45-degrees interval),
and less than two pieces of interference speech were placed in the
other arrival direction. The source signals were randomly selected
from 4,000 male/female sentences. After adjusting the background
noise level to the target speech from -10 to 10 dB, the array-observed
signals were simulated. In total, 2.8 hours (≈ 5× 5× 100× 4 sec-
onds) of observation signals were used for training, and 0.6 hours
(≈ 5× 5× 20× 4 seconds) of different signals were used for eval-
uation. The other parameters are listed in Table 1.

The neural networks were constructed by modeling the tar-
get/noise sources with β=320 spectral bases for each auto-encoder.
By using optimized p, the PSDs of the target/noise sources were
estimated and Wiener filtering was applied to the fixed beamform-
ing output (Prop. DNN-WF). For comparison, neural networks of
the same size were used, whose input features were normalized to
follow a zero-mean normal distribution, the final layer activation

Fig. 2. Visualization of input/hidden/output layer and some network
parameters when applying proposed method

function was replaced by a linear function, and network parameters
were initialized with normal auto-encoders (Conv. DNN-WF). We
also calculated the output performances when Wiener filter was
ideally designed to investigate the upper boundary of performance.

4.2. Experimental results

The experimental results are listed in Table 2. The SINR improve-
ment (= output SINR - input SINR) was calculated for the output of
MVDR beamforming (BF), Conv. DNN-WF, Prop. DNN-WF, and
ideal WF. Although SINR improvement varied corresponding to the
input SINR with conventional methods, it remained around 12 dB
almost independently of the input SINR with the proposed method.
Since SINR improvement was around 15 dB when ideal Wiener fil-
ter was applied, we believe that our method will work well in various
noisy environments.

Input/hidden/output layers and some network parameters are il-
lustrated in Fig. 2. By de-noising non-negative auto-encoders, the
target/noise sources seemed to enhance to some degree. It was con-
firmed that W(4) works for complementarity subtracting the auto-
encoder outputs for each frequency band. Since the estimated PSDs
were similar to the ideal value, complementarity subtraction may be
important for accurate PSD estimation.

5. CONCLUSION

A method for constructing deep neural networks composed of non-
negative auto-encoders and complementarity subtraction is proposed
for supervised source separation. To model the spectral characteris-
tics of target/noise sources, non-negative auto-encoders were applied
to gain normalized beamforming outputs. After de-noising through
non-negative auto-encoders, complementarity subtraction was ap-
plied to boost the accuracy of power spectra estimation. By calcu-
lating Wiener filters frame-by-frame, output signals were obtained.
Through several experiments, we confirmed that SINR improved by
around 12 dB with the proposed method.

We will work on implementing a convolutional model into our
proposed method since effective cues for estimating Wiener filters
may be obtained from the dependency between time frames.
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