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ABSTRACT

This paper deals with the separation of music into individual instru-
ment tracks which is known to be a challenging problem. We de-
scribe two different deep neural network architectures for this task, a
feed-forward and a recurrent one, and show that each of them yields
themselves state-of-the art results on the SiSEC DSD100 dataset.
For the recurrent network, we use data augmentation during training
and show that even simple separation networks are prone to over-
fitting if no data augmentation is used. Furthermore, we propose
a blending of both neural network systems where we linearly com-
bine their raw outputs and then perform a multi-channel Wiener fil-
ter post-processing. This blending scheme yields the best results that
have been reported to-date on the SiSEC DSD100 dataset.

Index Terms— Music source separation (MSS), Deep neural net-
work (DNN), Long-short term memory (LSTM), Blending

1. INTRODUCTION
In this paper, we study the problem of separating music into instru-
ment tracks. In particular, we study the separation into avocalsand
accompanimenttrack, or, more fine-grained, into tracks forvocals,
bass, drumsandother. Various applications require such track es-
timates ranging from Karaoke systems which use a separation into
an instrumental and vocal track, see for example [1, 2], to upmixing
where one tries to obtain a multi-channel version of the song, see for
example [3–5].
Despite its difficult nature,music source separation(MSS) has
received increasing interest over the last years. Especially the
professionally-mixed music separation task [6] – called MUS –,
which is a subtask of the regularly heldSignal Separation Evalu-
ation Campaign(SiSEC), has helped to stir this interest. For the
2015 version of this contest, the newMSD100 datasetwas prepared
consisting of aDev andTestpart with 50 songs each [7]. For ev-
ery song, the mixture and its four sourcesbass, drums, other and
vocalsare available, and this dataset allowed for the first time to
evaluate different source separation methods on a wide variety of
music genres. The MSD100 dataset has been further improved for
the latest SiSEC 2016 contest by using digital audio workstation
software and mixing settings that professional audio engineers use.
In order to differentiate this dataset from the previous version, it is
calledDSD1001.
The best results for the MUS task for SiSEC 2015 and SiSEC
2016 were obtained by approaches that used deep neural networks
(DNN)s [8–10] and this observation for MSS is in line with many
other applications where DNNs have outperformed the previous best
systems2. Using training corpora (e.g., the Dev part of DSD100), it
is possible to learn neural networks that extract a particular target
instrument from the mixture. Furthermore, DNNs have also shown

1All results in this paper have been obtained with this improved dataset.
2A good general overview of DNNs and their success can be foundin the

review paper [11] and the references therein.

very good performance for the related problems of extracting speech
from music in [12] or for vocals separation from music in [13–15].
The contribution of this paper is three-fold: First, we will describe
in detail our submissions to the latest SiSEC contest. In particu-
lar, we give results for our feed-forward approach from [10] with a
multi-channel Wiener filter(MWF) post-processing, as we used only
single channel Wiener filters(SWF) up to now. We also investigate
the use of a recurrent neural network for the extraction of the instru-
ments. This recurrent structure has the advantage that it allows to
better take into account the context information from neighbouring
mixture frames, which is important to capture information about the
temporal structure of the song. A second contribution of the paper is
the proposal to use data augmentation during training. This is espe-
cially important for the training of the recurrent neural networks as
we only used the Dev part of DSD100 to learn these networks and
do not utilize additional data. We show that data augmentation helps
to learn separating networks that generalize better. A final contri-
bution is to show that a blending of the raw network outputs before
the MWF post-processing can considerably improve the separation
performance for all sources and the results on the DSD100 dataset
are the best that have been reported so far. Blending, also known
as fusion, of MSS algorithms is a quite new topic in the source sep-
aration literature and was discussed in [16] and in [17, 18] where
mask estimates of different systems are combined for speech en-
hancement and vocal separation, respectively. More recently, [19]
considers a neural network approach to combine the output of two
other neural networks that estimate soft and binary separation masks
and [20] discusses a linear combination of the estimated masks from
different DNN systems. Furthermore, [21, 22] discusses the train-
ing of multi-context networks and [23] a cooperative deep stacking
approach where two networks with different inputs are combined at
the layer-level. In contrast to these approaches, we blend the raw
outputs of two different network structures, a feed-forward and re-
current one, and additionally perform a Wiener filter post-processing
of the enhanced separations. This additional step allows to further
improve the separations as the MWF is computed from better source
estimates, which we obtain after the blending.
This paper is structured as follows: In Sec. 2, we will show two
different network structures for the extraction of instruments from
music. In particular, we describe a feed-forward and a recurrent ar-
chitecture. In order to prove the effectiveness of data augmentation,
we also trained a recurrent architecture without augmentation and
report its performance in Sec. 3. Sec. 4 shows that a blending of
the two networks yields a new system that has considerably better
separation performance. Finally, Sec. 5 compares our approachesto
the DNN system from [9] and to threenon-negative matrix factor-
ization(NMF) systems known from literature (sparse NMF [24,25],
discriminative NMF [26] and DeepNMF [27]) before we conclude
this paper in Sec. 6.
The following notations are used throughout this paper:x denotes a
column vector andX a matrix where in particularI is the identity
matrix. The matrix transpose and Euclidean norm are denoted by
(.)T and‖.‖, respectively.
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Fig. 1: General DNN approach for MSS of music

2. MSS USING DEEP NEURAL NETWORKS
In the following, we will introduce the basic SiSEC MUS problem.
Let x(n) ∈ R

2 denote the stereo mixture in the time domain which
is known to be composed of the four sourcesbasssB(n), drums
sD(n), othersO(n) andvocalssV(n) such that

x(n) = sB(n) + sD(n) + sO(n) + sV(n) =
∑

i∈I
si(n). (1)

with I := {B,D,O,V}. The goal of MSS is to retrieve good stereo
source estimateŝsi(n) such that they are as close as possible to the
true sourcessi(n). A popular performance measure to judge the
quality of the separation isBSS Eval[28], which is also used in the
SiSEC MUS task to compare the different approaches.
Finally, most approaches perform the separation in theshort-time
Fourier transform(STFT) domain and we will denote byX(m, f) ∈

C
2, Si(m, f) and Ŝi(m, f) the mixture, the sources and the esti-

mates in the STFT domain, respectively, wherem gives the frame
index andf the frequency bin index.
We will now explain in more detail the general DNN approach for
the MUS problem before we describe in Sec. 2.2 and 2.3 the feed-
forward and recurrent approaches.

2.1. General DNN Approach
Fig. 1 shows the general DNN approach for MSS that we use. In-
stead of using one DNN to estimate the STFT magnitudes, we use an
individual DNN for each instrument that is trained to extract this in-
strument from a mixture, which allows us to better scale to mixtures
with different constituting instruments. After an optional downsam-
pling3, the STFT of the music that we want to separate is computed.
We pass the STFT magnitudes – possibly together with some pre-
ceding/succeeding context frames – through the DNNs and obtain
an estimate of the STFT magnitudes for each source. These mag-
nitude estimates are then combined together with the phase of the
mixture to compute the inverse STFT. Finally, a SWF or a MWF
post-processing is applied to enhance the separation performance
[9,29,30]. Applying the SWF/MWF can be seen as a post-processing
which ensures that the sum of the four estimates gives the original
mixture. It reduces considerably interferences from other sources
and separation artifacts and, hence, SWF/MWF is an important step
of the separation. The multi-channel Wiener filter assumes the signal
model [9,29,30]

X(m, f) = Si(m, f) + Zi(m, f) (2)

with i ∈ I andZi(m, f) =
∑

j∈I\i Sj(m, f) where each STFT
time-frequency binSi(m, f) is complex Gaussian with zero-mean
and covariance matrixvi(m, f)Ri(f). vi(m, f) is the power-
spectral density(PSD) andRi(f) the time-invariant4 spatial co-
variance matrix, respectively. Theminimum mean squared error
estimator forSi(m, f) from X(m, f) is well known and given
by [31]

Ŝi(m, f)=vi(m, f)Ri(f)
(

∑

j∈I
vj(m, f)Rj(f)

)−1

X(m, f).

(3)

3We use a downsampling to32kHz only for the feed-forward approach in
Sec. 2.2. Please refer to [10] for more details.

4Hence, we assume that we have a time-invariant, convolutive mixture
process which is reasonable for the majority of music mixtures.
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Fig. 2: DNN architectures for the extraction of an instrument

In order to apply the MWF, we need to estimate the PSDsvi(m, f)
and spatial covariance matricesRi(f) which we do in our case from
the raw output of each instrument DNN. In particular, we estimate
them fromM consecutive frames by

v̂i(m, f)=
1

2
‖Ŝi(m, f)‖2, R̂i(f)=

∑M

m=1
Ŝi(m, f)Ŝi(m, f)H

∑M

m=1
v̂i(m, f)

,

(4)
as was proposed in [9, 32]. The estimator for the spatial covari-
ance matrix can be thought of being a weighted version of the clas-
sical maximum likelihoodestimator. More weight is put on time-
frequency bins with high energy as we can assume that we then have
a better signal-to-interference ratio. We will see in Sec. 2.2 that the
MWF improves the separation performance. Especially when listen-
ing to the separation results, one can observe a much more stable
stereo location of the extracted sources and no disturbingflanging
effectsappear.

2.2. Feed-Forward Networks (FNN)
The first approach uses the feed-forward architecture as described
in [10] and shown schematically in Fig. 2(a). In this paper, we will
focus on the changes with respect to [10] and use the same notation
as we used there. The interested reader is referred to [10] for more
details about the data preparation, weight initialization and layerwise
training. We consider two different sets of networks:
FNN-1 For each instrument, we train arectified linear unit(ReLU)

[33] network withK = 3 layers fromP = 2 · 106 training
samples. The training material consists of short instrument loops,
which are independent from the Dev or Test part of DSD100. The
training samples are created by randomly selecting loops for each
instrument and mixing them with random amplitudes. The num-
ber of non-overlapping context frames isC = 3 and, as we use a
FFT size of1 024, the input vector has length(2C + 1) · 513 =
3 591. Finally, this set of networks uses a single-channel Wiener
filter post-processing. Please note that the results from this set
of networks was our submission to SiSEC 2015 and is denoted
in [7,9] asUHL1.

FNN-2 This set of neural networks is newly trained. Additionally to
the dataset of FNN-1, we use non-bleeding stems from MedleyDB
[34] and the material that is contained in the Dev part of DSD100.
Furthermore, it uses input frames with50% overlap andC = 8
context frames. Aprincipal component analysis(PCA) [35] is
used to half the size of the input vector. This allows us to train
with more training samples, namelyP = 1.2 · 107. Furthermore,
FNN-2 usesK = 4 ReLU layers while all other settings and the
training procedure are the same as for FNN-1.

Table 1 compares the two sets of DNNs on the Test part of DSD100
where the values are obtained by first averaging thesignal-to-
distortion ratio(SDR) values [28] for each song and then computing
the median over all50 songs. This table contains also alower base-
line BL andupper baseline BU, where BL uses the original mixture
scaled by1

4
as separations and BU gives the oracle performance

of an ideal ratio mask. In order to create an estimate for the ac-
companiment, i.e., for all sources except the vocals, we compute
ŝA(n) = x(n)− ŝV(n).
From this table, we can observe that FNN-2 exhibits on average a
0.6 dB better SDR than FNN-1. The two main differences between
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Network SDR in dB Comments
Bass Drums Other Vocals Acco.

BL 0.72 0.95 1.43 0.35 6.82 lower baseline: mix as separations
BU 6.26 7.96 7.76 10.16 16.38 upper baseline: ideal ratio mask
FNN-1 2.22 3.08 2.48 3.63 10.19UHL1 from SiSEC 2015 [7,9]
FNN-2 2.54 3.75 2.92 4.47 11.12
BLSTM-1 2.30 3.71 2.98 3.69 10.33 one BLSTM layer
BLSTM-2 2.77 3.78 3.44 4.91 11.35 two BLSTM layers
BLSTM-3 2.89 4.00 3.24 4.86 11.26 three BLSTM layers

Table 1: FNN and BLSTM networks on Test part of DSD100
the two networks is that FNN-2 uses additionally the Dev part of
DSD100 and a MWF instead of a SWF. We also trained a set of
networks with only each of these changes and could observe that
using the Dev part improves the SDR on average by0.4 dB and
using the MWF improves by another0.2 dB.

2.3. Bidirectional LSTM Networks
The second approach uses a recurrent neural network architec-
ture with bidirectional LSTM(BLSTM) layers [36] and is shown
in Fig. 2(b). Compared to traditional recurrent neural networks,
(B)LSTM networks have the advantage that they do not suffer from
the vanishing/exploding gradient problem and are, therefore, quite
popular for problems which require memory. For our separation
problem, such a recurrent approach has the advantage that we better
take into account the context information than using supervectors
with neighbouring magnitude frames as we did in Sec. 2.2. The net-
work can memorize longer dependencies and this helps to improve
the MSS performance.
We trained5 three different sets of networks which differ in their
number of BLSTM layers. Each BLSTM layer consists of250 for-
ward and250 backward LSTM cells whose output is concatenated
to form the overall output of the layer. The instrument loops that we
used for the training of the FNNs in Sec. 2.2 are too short for the
sequence training of the BLSTM networks. Therefore, we trained
them solely on the Dev part of DSD100 and data augmentation is
used to avoid overfitting (cf. Sec. 3). The input to the BLSTM net-
works are stereo magnitude frames from the left and right channel
which are obtained by using a frame size of1 024 samples with50%
overlap. The output is the estimated stereo magnitude frame of the
target instrument. We again post-process the raw outputs by a MWF
to enhance the results.
Table 1 shows the results of the three BLSTM networks. We can ob-
serve that the two deeper networks withK = 2 andK = 3 BLSTM
layers show a considerably better performance than BLSTM-1.
Comparing BLSTM-2 and BLSTM-3 to FNN-2, we can observe
that BLSTM-3 exhibits a more consistent improvement for all in-
struments over FNN-2 (cf. the SDR value for drums) and we
therefore choose this network for the blending in Sec. 4.

3. DATA AUGMENTATION DURING TRAINING
It is well known that data augmentation can help considerably to
improve the performance of DNNs, see for example [40, 41] where
augmentation was investigated for music information retrieval tasks.
We use the following data modifications on-the-fly when we con-
struct a training mini-batch sequence for the BLSTMs:
• random swapping left/right channel for each instrument,
• random scaling with uniform amplitudes from[0.25, 1.25],
• random chunking into sequences for each instrument, and,
• random mixing of instruments from different songs.
Each mini-batch consists of ten sequences where each sequence has
a length of500 stereo STFT magnitude frames. In order to prove the
effectiveness of data augmentation, we trained the BLSTM-1 net-
work for the extraction of the vocals also without augmentation and
the results are shown in Table 2 where the accompaniment is again
estimated aŝsA(n) = x(n) − ŝV(n). This table gives the raw SDR
values without a SWF/MWF post-processing as we want to show
more clearly the effect of data augmentation.

5We used Lasagne [37] and Theano [38,39].

Instr. Network SDR in dB (Raw outputs)
Dev Test [All] Test [New artists]

Vocals
BL 0.91 0.35 0.77
BLSTM-1 w/o data augm. 7.13 3.37 3.19
BLSTM-1 with data augm. 6.19 3.59 3.79

Accomp.
BL 6.57 6.82 6.49
BLSTM-1 w/o data augm. 13.33 9.71 9.53
BLSTM-1 with data augm. 12.23 9.93 9.64

Table 2: Effect of data augmentation for BLSTM-1
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Fig. 3: Effect of blending (λ = 0: BLSTM-3,λ = 1: FNN-2)
From Table 2, we can see that the augmentation is beneficial. Vocals
and accompaniment gain on average0.2 dB if we consider all Test
songs and even0.35 dB if we only consider the subset of Test songs
where there is not a song of the same artist in the Dev part. The
results on this subset can be used to better estimate the generalization
performance of a network and we can see that data augmentation
helps to learn networks that generalize better to new artists. Please
note that we expect the data augmentation to be even more beneficial
for more complex networks like BLSTM-2 and BLSTM-3.

4. BLENDING OF NETWORKS
In order to further improve the MSS performance, we propose to
combine the results of the feed-forward and the BLSTM network.
It is well known that a blending of different systems can improve
the performance if the errors of each individual system are uncor-
related and, e.g., has been successfully used in recommender sys-
tems [42, 43]. As we combine two networks which differ in their
network structure and their training material, we can assume that
both systems are different enough such that a blending of them is
beneficial.
In particular, we use a time-invariant blending which takes the form

ŝi,BLEND(n) = λŝi,FNN(n) + (1− λ)̂si,BLSTM(n), (5)

i.e., we linearly blend the raw DNN outputs for each instrument
i ∈ I. Finally, we use a MWF post-processing to enhance the re-
sults. Fig. 3 shows the SDR improvement with respect to BL for a
blending of the two best systems from Sec. 2.2 and 2.3, i.e., FNN-2
and BLSTM-3. We choose the blending weightλ to have a value of
λ = 0.25 as this is the best average improvement value on the Dev
part of DSD100. Looking at the the Test part, we can observe that
all instruments improve by this choice and that it yields on average
an SDR improvement of0.2 dB compared to BLSTM-3. In particu-
lar, for vocals and accompaniment the gain is largest with0.4 dB. As
we were interested in the generalization performance of the blending
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Fig. 4: SDR improvement in dB for different music genres (Test part of DSD100)
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Approach SDR in dB Comments
Bass Drums Other Vocals Acco.

S
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e-
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l
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et

ho
ds

BLEND (SWF) 2.76 3.93 3.37 5.13 11.53λ = 0.25

sNMF [24,25] -0.84 1.12 1.82 2.17 8.58Q = 25

dNMF [26] 0.91 1.87 2.43 2.56 8.88 Q = 25

DeepNMF [27] 1.88 2.11 2.64 2.75 8.90Q = 25

M
ul

ti-
ch

an
ne

l
m

et
ho

ds BLEND (MWF) 2.98 4.13 3.52 5.23 11.70λ = 0.25

NUG [9] 2.72 3.89 3.18 4.55 10.29

Table 3: Comparison on Test part of DSD100
approach, we also performed an informal listening test with popular
Hits and we could observe a significant improvement for our blend-
ing system. Especially the temporal stability of the extracted sources
is improved, i.e., attack/decay parts of sources are not missing in the
separated instruments.
Our blending scheme (5) can be seen as an extension oflearned tem-
poral fusion, which was proposed in [17]. Instead of linearly com-
bining the systems after the MWF, we blend the raw outputs of each
DNN and perform afterwards a MWF post-processing. This final
MWF helps to reduce the interference and achieves better results as
we obtain better source estimates which in turn allows a better mul-
tichannel Wiener filtering. Comparing the two schemes, we can ob-
serve that our fusion is on average0.1 dB better for SDR and0.3 dB
for thesignal-to-interference ratio(SIR) than thelearned temporal
fusionscheme proposed in [17].
Finally, we also studied the effect of blending for the different music
genres in DSD100. The results are shown in Fig. 4 and we can ob-
serve that the blending of FNN-2 and BLSTM-3 is often even better
than the best individual networks (20 out of 35 times) which shows
the effectiveness of the blending.

5. COMPARISON TO OTHER APPROACHES
In this section, we will now compare our blended MSS system from
Sec. 4 to four other well known approaches from the literature:
• sNMF: Supervisedsparse non-negative matrix factorization

(sNMF) approach [24,25] with sparsity factorµ = 5.
• dNMF: Superviseddiscriminative non-negative matrix factoriza-

tion (dNMF) approach [26] where we use a discriminative cost
function to learn better basis vectors from the Dev songs.

• DeepNMF: Non-negative deep network architecture which results
from unfolding NMF iterations and untying their parameters [27].

• NUG: This approach uses a complex Gaussian time-frequency
model where the spectral updates are computed with the help of

multi-channel DNNs [9]. Compared to our FNN approach, this
approach iteratively updates the spatial and spectral estimates in
an expectation-maximization(EM) like manner whereas we use
the Wiener filter only as post-processing and one can think of our
FNN to be the special case of doing only a single EM iteration.
TheNUGsystem that we consider here has shown very good per-
formance in [9] and was denoted there asNUG16.

The results on the Test part of DSD100 are given in Table 3 and
shown as box plots in Fig. 5. For the three NMF approaches,Q ba-
sis vectors are learned for each instrument and Dev song of DSD100
which we concatenate together to obtain finally50 · Q basis vec-
tors per instrument. We tried different numbersQ of basis vec-
tors per song, namelyQ ∈ {5, 10, 15, 20, 25, 30} and obtained the
best average performance forQ = 25 which are reported in Ta-
ble 3. Among the NMF methods, we can observe that the DeepNMF
method from [27] performs best. As all NMF systems are single-
channel approaches, we also rerun our blending approach with a
SWF to allow a fairer comparison. By using the SWF, we loose
on average0.2 dB SDR compared to the MWF but the blending ap-
proach is still better than the DeepNMF approach.
Furthermore, it is also interesting to compare BLEND (MWF) to
FNN-1 which was the best system of the SiSEC 2015 contest [7].
We can observe that we could gain1.1 dB SDR since the last SiSEC
competition, which is a considerable improvement.
Overall, we can conclude that the DNN systems NUG and BLEND
(MWF) perform best where in particular our BLEND (MWF) system
achieves on average a0.4 dB better SDR than NUG.

6. CONCLUSIONS
In this paper, we described different approaches for the music
source separation problem. We could obtain the best results by a
linear blending of the outputs of a feed-forward and a recurrent bi-
directional LSTM network where the recurrent network was trained
with data augmentation. Compared to the individual networks, we
gain0.2 dB SDR by the blending and these results are the best that
have been reported so far on the DSD100 dataset.
We participated with our systems7 in the SiSEC 2016 MUS contest
and the results of the SiSEC MUS 2016 competition can be found
in [6].

6We thank the authors of [9] for providing us with these results.
7We submitted the following three systems: FNN-2 asUHL1, BLSTM-3

asUHL2 and BLEND (MWF) asUHL3.
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