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ABSTRACT very good performance for the related problems of extracting speech
. . . L . from music in [12] or for vocals separation from music in [13-15].
This paper deals with the separation of music into individual mstru-.l.he contribution of this paper is three-fold: First we will describe
ment tracks which is known to be a challenging problem. We de- . tNIS pap bl ' .
detail our submissions to the latest SISEC contest. In particu-

scribe two different deep neural network architectures for this task, r, we give results for our feed-forward approach from [10] with a

feed-forward and a recurrent one, and show that each of thensyiel ggulti-channel Wiener filtefMWE) post-processing, as we used only

themselves state-of-the art results on the SISEC DSD100 datas hgle channel Wiener filteSWF) up to now. We also investigate
For the recurrent network, we use data augmentation during training} 9 p : ; 9
e use of a recurrent neural network for the extraction of the instru-

and show that even simple separation networks are prone to ove ents. This recurrent structure has the advantage that it allows to

fitting if no data augmentation is used. Furthermore, we propos - . ; . .
a blending of both neural network systems where we linearly com® etter take into account the context information from neighbouring
mixture frames, which is important to capture information about the

bine their raw outputs and then perform a multi-channel Wiener fil- oral structure of the sond. A second contribution of the paper is
ter post-processing. This blending scheme yields the best results t {np 9. ; : P € pap
e proposal to use data augmentation during training. This is espe-

have been reported to-date on the SISEC DSD100 dataset. ; ; T
cially important for the training of the recurrent neural networks as
Index Terms— Music source separation (MSS), Deep neural net-we only used the Dev part of DSD100 to learn these networks and

work (DNN), Long-short term memory (LSTM), Blending do not utilize additional data. We show that data augmentation helps
to learn separating networks that generalize better. A final contri-
1. INTRODUCTION bution is to show that a blending of the raw network outputs before

the MWF post-processing can considerably improve the separation
performance for all sources and the results on the DSD100 dataset
are the best that have been reported so far. Blending, also known
as fusion, of MSS algorithms is a quite new topic in the source sep-
@Jration literature and was discussed in [16] and in [17, 18] where
ask estimates of different systems are combined for speech en-
ncement and vocal separation, respectively. More recently, [19
considers a neural network approach to combine the output of two
other neural networks that estimate soft and binary separation masks
gnd [20] discusses a linear combination of the estimated masks from
ifferent DNN systems. Furthermore, [21, 22] discusses the train-
“"ing of multi-context networks and [23] a cooperative deep stacking
approach where two networks with different inputs are combined at
2015 version of s contes, he NEISDL0 AtaSBlas PIEpRTEd s o o aohot ot oo 1o
consisting of eDev and Testpart with 50 songs each [7]. For ev- curfent one, and additionally perform a Wiener filter post-processing
ery song, the mixture and its four sourdeass drums other and of the enhanced separations. This additional step allows to further
vocalsare available, and this dataset allowed for the first time to P y : P
evaluate different source separation methods on a wide variety prove the separations as the MWF is computed from better source
%timates, which we obtain after the blending.

In this paper, we study the problem of separating music into instru
ment tracks. In particular, we study the separation into@alsand
accompanimentrack, or, more fine-grained, into tracks feocals
bass drumsandother. Various applications require such track es-
timates ranging from Karaoke systems which use a separation in
an instrumental and vocal track, see for example [1, 2], to upmixin
where one tries to obtain a multi-channel version of the song, see fi
example [3-5].

Despite its difficult naturemusic source separatio(MSS) has
received increasing interest over the last years. Especially th
professionally-mixed music separation task [6] — called MUS
which is a subtask of the regularly heRignal Separation Evalu-
ation Campaign(SiSEC), has helped to stir this interest. For the

music genres. The MSD100 dataset has been further improved f his paper is structured as follows: In Sec. 2, we will show two

the latest SISEC 2016 contest by using digital audio workstatio if t network struct for th tracti finst s f
software and mixing settings that professional audio engineers usgifferent network structures for the extraction of instruments from

In order to differentiate this dataset from the previous version, it ighuSiC- In particular, we describe a feed-forward and a recurrent a
calledDSD106. chitecture. In order to prove the effectiveness of data augmentation,

The best results for the MUS task for SISEC 2015 and SiSE e also trained a recurrent architecture without augmentation and

2016 were obtained by approaches that used deep neural networtlggort Its performance in Sec. 3. Sec. 4 shows that a blending of
g k . two networks yield tem that h iderably bett
(DNN)s [8-10] and this observation for MSS is in line with many O NEWWOPKS YIEI0S 8 newt system that nas consideranly Better

s . separation performance. Finally, Sec. 5 compares our approtches
other applications where DNNs have outperformed the previous begle pNN system from [9] and fo threeon-negative matrix factor-

system$. Using training corpora (e.g., the Dev part of DSD100), it jzation(NMF) systems known from literature (sparse NMF [24, 25],
is possible to learn neural networks that extract a particular targefiscriminative NMF [26] and DeepNMF [27]) before we conclude
instrument from the mixture. Furthermore, DNNs have also shownhjs paper in Sec. 6.

n — ] o The following notations are used throughout this papedenotes a
All results in this paper have been obtained with this impdogataset. column vector andX a matrix where in particulaF is the identity

ZA good general overview of DNNs and their success can be fautie  matrix. The matrix transpose and Euclidean norm are denoted by
review paper [11] and the references therein. ( )T and||.|, respectively
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Fig. 1. General DNN approach for MSS of music (a) Feed-forward (here: FNN-2)  (b) BLSTM (here: BLSTM-3)

> MSS USING DEEP NEURAL NETWORKS Fig. 22 DNN architectures for the extraction of an instrument
In the following, we will introduce the basic SISEC MUS problem. In order to apply the MWF, we need to estimate the PS8, f)
Letx(n) € R? denote the stereo mixture in the time domain which and spatial covariance matricBs  f) which we do in our case from
is known to be composed of the four sourdesssg(n), drums the raw output of each_ instrument DNN. In particular, we estimate
so(n), otherso(n) andvocalssy (n) such that them fromA consecutive frames by

M & & H
(1) = so(n) + so(n) + s0(n) +3v(n) =3 _si(0). (@) aulm, )= L[S, f)I7, Buu()= Zmmi One DS, )
ez 2 Zm:l Vi (m7 f)
with Z := {B, D, O, V}. The goal of MSS is to retrieve good stereo ()]
source estimates; (n) such that they are as close as possible to theas was proposed in [9, 32]. The estimator for the spatial covari-
true sources;(n). A popular performance measure to judge theance matrix can be thought of being a weighted version of the clas-
quality of the separation iBSS Eva[28], which is also used in the sical maximum likelihoocestimator. More weight is put on time-
SISEC MUS task to compare the different approaches. frequency bins with high energy as we can assume that we then have
Finally, most approaches perform the separation instert-time  a better signal-to-interference ratio. We will see in Sec. 2.2 that the
Fourier transform(STFT) domain and we will denote B (m, f) € MWEF improves the separation performance. Especially when listen-
C?, S;(m, f) andS;(m, f) the mixture, the sources and the esti- ing to the separation results, one can observe a much more stable
mates in the STFT domain, respectively, whetegives the frame ~ Stereo location of the extracted sources and no disturttemging
index andf the frequency bin index. effectsappear.
We will now explain in more detail the general DNN approach for )
the MUS problem before we describe in Sec. 2.2 and 2.3 the fee 2. Feed-Forward Networks (FNN)
forward and recurrent approaches.

)

he first approach uses the feed-forward architecture as dedcribe
in [10] and shown schematically in Fig. 2(a). In this paper, we will
2.1. General DNN Approach focus on the changes with respect to [10] and use the same notation
Fig. 1 shows the general DNN approach for MSS that we use. InaS We used there. The interested reader is referred to [10] for more
stead of using one DNN to estimate the STFT magnitudes, we use &¢tails about the data preparation, weight initialization and layerwise
individual DNN for each instrument that is trained to extract this in-training. We consider two different sets of networks:
strument from a mixture, which allows us to better scale to mixture$"NN-1 For each instrument, we trairrectified linear unit(ReLU)
with different constituting instruments. After an optional downsam- [33] network with K = 3 layers fromP = 2 - 10° training
pling®, the STFT of the music that we want to separate is computed. samples. The training material consists of short instrument loops,
We pass the STFT magnitudes — possibly together with some pre- which are independent from the Dev or Test part of DSD100. The
ceding/succeeding context frames — through the DNNs and obtain training samples are created by randomly selecting loops for each
an estimate of the STFT magnitudes for each source. These mag-instrument and mixing them with random amplitudes. The num-
nitude estimates are then combined together with the phase of the Per of non-overlapping context framesis= 3 and, as we use a
mixture to compute the inverse STFT. Finally, a SWF or a MWF FFT size of1 024, the input vector has lengi2C + 1) - 513 =
post-processing is applied to enhance the separation performance3 591. Finally, this set of networks uses a single-channel Wiener
[9,29,30]. Applying the SWF/MWF can be seen as a post-processing filter post-processing. Please note that the results from this set
which ensures that the sum of the four estimates gives the original Of networks was our submission to SISEC 2015 and is denoted
mixture. It reduces considerably interferences from other sources in [7,9] asUHLL. _ ) -
and separation artifacts and, hence, SWF/MWE is an important sté:d\‘N'z This set of neural networks is newly trained. Additionally to
of the separation. The multi-channel Wiener filter assumes the signal the dataset of FNN-1, we use non-bleeding stems from MedleyDB

model [9, 29, 30] [34] and the material that is contained in the Dev part of DSD100.
T _ Q. ) Furthermore, it uses input frames wiih% overlap and”' = 8
X(m, f) = 8i(m, f) + Zi(m, f) @ context frames. Aprincipal component analysi€PCA) [35] is

withi € ZandZ;(m, f) = >-;.7,; S;i(m, f) where each STFT used to half the size of the input vector. This allows us to train

time-frequency birS, (m, f) is complex Gaussian with zero-mean  With more training samples, namely = 1.2 - 10”. Furthermore,
and covariance matriw;(m, f)R:(f). wvi(m, f) is the power- FNN-2 usesi' = 4 ReLU layers while all other settings and the
spectral densityPSD) andR.(f) the time-invariarft spatial co- training procedure are the same as for FNN-1.

variance matrix, respectively. Thminimum mean squared error Table 1 compares the two sets of DNNs on the Test part of DSD100

estimator forS;(m, f) from X(m, f) is well known and given where the values are obtained by first averaging stgmal-to-
by [31] distortion ratio(SDR) values [28] for each song and then computing
1 the median over aB0 songs. This table contains als¢oaver base-
Si(m, f)=vi(m, f)Ri(f) (Z v;(m, f)Rj(f)) X(m, f).  line BLandupper baseline BUwhere BL uses the original mixture
et 3) scaled byl as separations and BU gives the oracle performance
of an ideal ratio mask. In order to create an estimate for the ac-

companiment, i.e., for all sources except the vocals, we compute

3We use a downsampling 82kHz only for the feed-forward approach in

Sec. 2.2. Please refer to [10] for more details. 8a(n) :.x(n) —8v(n). .
4Hence, we assume that we have a time-invariant, convolutivéunreix ~From this table, we can observe that FNN-2 exhibits on average a
process which is reasonable for the majority of music mixtures. 0.6 dB better SDR than FNN-1. The two main differences between
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SDRin dB SDR in dB (Raw outputs)

Network Comments Instr. Network

Bass Drums Other Vocals Acco. Dev Test[All]  Test [New artists]
BL 0.72 0.95 143 0.35 6.82 lower baseline: mix as separations BL 0.91 0.35 0.77
BU 6.26 7.96 7.76 10.16 16.38 upper baseline: ideal ratio mask Vocals BLSTM-1 w/o data augm. 7.13 3.37 3.19
FNN-1° ~ ~ 222 3.08 248 3.63 10.19HL1fromSiISEC2015[7,9] = _ _ BLSTM-lwithdataaugm. 619 359 379
FNN-2 254 375 292 447 11.12 BL 6.57 6.82 6.49
BLSTM-1 ~ ~ 230 371 298 369 10.33 one BLSTMlayer = Accomp. BLSTM-1 w/o data augm. 13.33 9.71 9.53
BLSTM-2 277 3.78 3.44 491 11.35 two BLSTM layers BLSTM-1 with data augm. 12.23 9.93 9.64
BLSTM-3 2.89 4.00 3.24 4.86 11.26 three BLSTM layers

Table 2: Effect of data augmentation for BLSTM-1

6 6.5

Table 1: FNN and BLSTM networks on Test part of DSD100

the two networks is that FNN-2 uses additionally the Dev part of
DSD100 and a MWF instead of a SWF. We also trained a set of
networks with only each of these changes and could observe that
using the Dev part improves the SDR on averagedblydB and
using the MWF improves by another2 dB.

@

IS

w

SDR improvement over BL in dB

2.3. Bidirectional LSTM Networks i G .

The second approach uses a recurrent neural network architec- : o oo } T8 hecmpanimen

ture with bidirectional LSTM(BLSTM) layers [36] and is shown X fueroge is fuerone

in Fig. 2(b). Compared to traditional recurrent neural networks, o 02 04 06 08 1 0 02 04 06 08 1
(B)LSTM networks have the advantage that they do not suffer from Blending weight A Blending weight

the vanishing/exploding gradient problem and are, therefore, quite (@) Dev part of DSD100

popular for problems which require memory. For our separation 5 5 )

problem, such a recurrent approach has the advantage that we better » ’N\

take into account the context information than using supervectors N wro

with neighbouring magnitude frames as we did in Sec. 2.2. The net- l
work can memorize longer dependencies and this helps to improve

the MSS performance.

We trained three different sets of networks which differ in their

L/’_m 44
number of BLSTM layers. Each BLSTM layer consists26f) for-

1 gﬁ;ﬂf : ‘
. Vocals ‘Accompaniment
ward and250 backward LSTM cells whose output is concatenated Average puarge
to form the overall output of the layer. The instrument loops that we T or o s 1 Y os oa PP

used for the training of the FNNs in Sec. 2.2 are too short for the Blending weight A Blending weight A
sequence training of the BLSTM networks. Therefore, we trained (b) Test part of DSD100
them solely on the Dev part of DSD100 and data augmentation is rig 3: Effect of blending & = 0: BLSTM-3, A = 1: FNN-2)

used to avoid overfitting (cf. Sec. 3). The input to the BLSTM net-g. ) 'rapie 5 e can see that the augmentation is beneficial. Vocals
works are stereo magnitude frames from the left and right channe] accompaniment gain on averay dB if we consider all Test

which are obtained by using a frame sizel 024 samples witli0% o045 and eve.35 dB if we only consider the subset of Test songs
overlap. The output is the estimated stereo magnitude frame of t here there is not a song of the same artist in the Dev part. The

target instrument. We again post-process the raw outputs by a MW esults on this subset can be used to better estimate the generalization

to enhance the results. -
erformance of a network and we can see that data augmentation
Table 1 shows the results of the three BLSTM networks. We can Obgelps to learn networks that generalize better to new artists. Please

fggfstgﬂc}\?ve ;Wgo%es?g:r;%?;wt? éﬁzmﬁ o%r%g?]{:(e :th?;.ELgl-_rngM-lPOte that we expect the data _augmentation to be even more beneficial
Comparing BLSTM-2 and BLSTM-3 to FNN-2, we can observe or more complex networks like BLSTM-2 and BLSTM-3,

that BLSTM-3 exhibits a more consistent improvement for all in- 4. BLENDING OF NETWORKS

sktlrumfents r?ver Fh'.N'Z (cf. ktfhe EDS vrél_ue _forsdruTs) and Weyn order to further improve the MSS performance, we propose to
therefore choose this network for the blending In Sec. 4. combine the results of the feed-forward and the BLSTM network.

3. DATA AUGMENTATION DURING TRAINING It is well known that a blending of different systems can improve

. . . the performance if the errors of each individual system are uncor-
It is well known that data augmentation can help considerably (qg|51ed and, e.g., has been successfully used in recommender sys-
improve the performance of DNNs, see for example [40, 41] Whergems 42, 43]. "As we combine two networks which differ in their

augmentation was investigated for music information retrieval taSkSnetwork structure and their training material, we can assume that

We use the following data modifications on-the-fly when we con- ; ; ;
struct a training mini-batch sequence for the BLSTMs: both systems are different enough such that a blending of them is

SDR improvement over BL in dB

d ina lefriaht ch If hi beneficial.
e random swapping leftright channel for each instrument, In particular, we use a time-invariant blending which takes the form
¢ random scaling with uniform amplitudes froji25, 1.25], 8 8Lenn (1) = ASuean(n) + (1 — A)3: sista(n) )

e random chunking into sequences for each instrument, and,
o random mixing of instruments from different songs. i.e., we linearly blend the raw DNN outputs for each instrument

Each mini-batch consists of ten sequences where each sequence has Z. Finally, we use a MWF post-processing to enhance the re-
a length of500 stereo STFT magnitude frames. In order to prove thesults. Fig. 3 shows the SDR improvement with respect to BL for a

effectiveness of data augmentation, we trained the BLSTM-1 netblending of the two best systems from Sec. 2.2 and 2.3, i.e., FNN-2
work for the extraction of the vocals also without augmentation andind BLSTM-3. We choose the blending weighto have a value of

the results are shown in Table 2 where the accompaniment is again= 0.25 as this is the best average improvement value on the Dev
estimated aga(n) = x(n) — 8v(n). This table gives the raw SDR part of DSD100. Looking at the the Test part, we can observe that
values without a SWF/MWF post-processing as we want to shovall instruments improve by this choice and that it yields on average

more clearly the effect of data augmentation. an SDR improvement df.2 dB compared to BLSTM-3. In particu-
lar, for vocals and accompaniment the gain is largest withiB. As
5We used Lasagne [37] and Theano [38, 39]. we were interested in the generalization performance of the blending
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Fig. 5. Comparison of different music source separation algorithms (BesbpDSD100)
Approach SDRin dB Comments multi-channel DNNs [9]. Compared to our FNN approach, this:
Bass Drums Other Vocals Acco. approach iteratively updates the spatial and spectral estimates in
5 T8 BLEND (SWF) 276 3.93 3.37 513 1153\ =0.25 an expectation-maximizatio(EM) like manner whereas we use
25 SWF [[22125] 605814 118172 212?32 225167 88'558 - the Wiener filter only as post-processing and one can think of our
woE — FNN to be the special case of doing only a single EM iteration.
eepNMF [27]  1.88 2.11 2.64 2.75 8.90Q = 25 h
38 Talen 5('\7'\/;':; 508 413 352 523 1170n—o09s The NUG system that we consider here has shown very good per-
3 %% NUG [9 2'72 3'89 3'18 4'55 10'29 o formance in [9] and was denoted theréNi$G 1°.
< . .
26E [l i : : i : The results on the Test part of DSD100 are given in Table 3 and

Table 3 Comparison on Test part of DSD100 shown as box plots in Fig. 5. For the three NMF approactelsa-

' . . - . sis vectors are learned for each instrument and Dev song of DSD100
approach, we also performed an informal listening test with populayhich we concatenate together to obtain finally- Q basis vec-
Hits and we could observe a significant improvement for our blendq g per instrument. We tried different numbepsof basis vec-
ing system. Especially the temporal stability of the extracted sourceg) g per song, namel@ € {5, 10, 15,20, 25,30} and obtained the
is improved, i.e., attack/decay parts of sources are not missing in thgast average performance f6r — 25 which are reported in Ta-
separated instruments. ble 3. Among the NMF methods, we can observe that the DeepNMF
Our blending scheme (5) can be seen as an extensleamied tem-  yethod from [27] performs best. As all NMF systems are single-
poral fusion which was proposed in [17]. Instead of linearly com- channel approaches, we also rerun our blending approach with a
bining the systems after the MWF, we blend the raw outputs of eacB\wE to allow a fairer comparison. By using the SWF, we loose

DNN and perform afterwards a MWF post-processing. This finalgp averag®.2 dB SDR compared to the MWF but the blending ap-
MWF helps to reduce the interference and achieves better results ggyach is still better than the DeepNMF approach.

we obtain better source estimates which in turn allows a better mulrthermore, it is also interesting to compare BLEND (MWF) to

tichannel Wiener filtering. Comparing the two schemes, we can obenN-1 which was the best system of the SISEC 2015 contest [7
serve that our fusion is on averagid dB better for SDR and.3dB e can observe that we coulgllgaiﬂ dB SDR since the last SiSEC[ ]
for the signal-to-interference ratigSIR) than thdearned temporal competition, which is a considerable improvement.

fusionscheme proposed in [17]. Overall, we can conclude that the DNN systems NUG and BLEND

Finally, we also studied the effect of blending for the different music MWF) perform best where in particular our BLEND (MWF) system
genres in DSD100. The results are shown in Fig. 4 and we can o {chieves on averagelat dB better SDR than NUG.

serve that the blending of FNN-2 and BLSTM-3 is often even better

than the best individual networks (20 out of 35 times) which shows 6. CONCLUSIONS

the effectiveness of the blending. In this paper, we described different approaches for the music
5. COMPARISON TO OTHER APPROACHES source separation problem. We could obtain the best results by a

In this section, we will now compare our blended MSS system fron]in€ar blending of the outputs of a feed-forward and a recurrent bi-
Sec. 4 to four bther well known approaches from the literature: directional LSTM network where the recurrent network was trained

. ; i ; ; -~ With data augmentation. Compared to the individual networks, we
* (SS'\II\II\ICAT:) gggreor;/::shefzs‘lpg%s]ewﬁ? gprgig%t/l\;scur:ra:tréx factorization gain0.2 dB SDR by the blending and these results are the best that

dNMF: Supervisedliscriminative non-negative matrix factoriza- have beler] reportgd so far on thg DSDlQO dataset.

tion (dNMF) approach [26] where we use a discriminative costWe participated with our systerhs the SISEC 2016 MUS contest
function to learn better basis vectors from the Dev songs. and the results of the SISEC MUS 2016 competition can be found
DeepNMF Non-negative deep network architecture which resultsin [6].

from unfolding NMF iterations and untying their parameters [27].  éwe thank the authors of [9] for providing us with these result

NUG: This approach uses a complex Gaussian time-frequency 7we submitted the following three systems: FNN-214L.1, BLSTM-3
model where the spectral updates are computed with the help @bUHL2 and BLEND (MWF) adJHL3.
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