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ABSTRACT

We propose a novel framework designed to extend conventional deep
neural network (DNN)-based feature enhancement approaches. In
general, the conventional DNN-based feature enhancement frame-
work aims to map input noisy observation to clean speech or a bi-
nary/soft mask in a deterministic way, assuming that there is one-
to-one mapping between the input and the output without any un-
certainty. However, when we consider that the general feature en-
hancement problem to be an ill-posed inverse problem where the
mapping cannot be uniquely determined given an input signal, the
assumption in the conventional approaches is not theoretically cor-
rect and potentially limits the performance of DNN-based feature en-
hancement. To overcome this problem, this paper proposes utilizing
a mixture density network (MDN), which is a neural network that
maps an input feature to a set of Gaussian mixture model (GMM)
parameters representing the distribution of a target variable. By es-
timating the distribution of clean speech feature based on MDN, we
are now able to explicitly consider the uncertainty in the parame-
ter estimation. Then, we further utilizes the estimated GMM to ob-
tain a refined clean speech estimate in the framework of statistical
model-based feature enhancement. In this paper, after detailing the
proposed framework and the MDN, we show mathematically and
experimentally how MDN appropriately models the uncertainty in-
formation. We also show that the proposed method can outperform
a conventional DNN-based feature enhancement method.

Index Terms— Mixture density network, model-based feature
enhancement, conditional density

1. INTRODUCTION

Speech signals captured with distant microphones inevitably contain
acoustic interferences such as background noise and reverberation,
which are known to severely degrade the audible speech quality of
captured signals [1] and the performance of automatic speech recog-
nition (ASR) [2, 3]. To cope with such acoustic interferences, it is
essential to establish effective speech/feature enhancement technolo-
gies. Thus a considerable amount of speech/feature enhancement
research has already been undertaken from various perspectives [4].

Traditionally, before the deep learning era, many effective
enhancement technologies were based on statistical model-based
signal processing, such as the vector Taylor series (VTS) ap-
proach [5, 6]. These approaches were formulated in mathematically
rigorous ways based on a model of a clean speech signal often
represented as a Gaussian mixture model (GMM) [5, 6], a hidden
Markov model (HMM) [7], or non-negative matrix factorization
(NMF)-based model [8–10]. Thanks to the given models and the
formulation, these statistical model-based approaches can appro-
priately handle uncertainty in parameter estimation and generate a

final enhanced signal in an optimal manner, which clearly is a strong
advantage of these methods. However, these methods became obso-
lete in the deep learning era, since they performed somewhat poorly
compared with deep neural network (DNN)-based approaches.

Recently, deep learning was successfully applied to speech/
feature enhancement problems [11–13], and has outperformed the
conventional model-based approaches. These approaches perform
enhancement by using learned DNN-based mapping between cor-
rupted speech signals and clean speech signals or soft/binary masks.
Although the conventional DNN-based enhancement approaches are
very powerful and can work very well for many tasks, we argue that
there is a fundamental problem that potentially limits their perfor-
mance. With these approaches, it is explicitly assumed that there
is deterministic 1-to-1 mapping between a given input signal (i.e.,
an observed signal) and a target signal (i.e., an output clean speech
signal) without any uncertainty. However, this assumption is clearly
incorrect, since the enhancement problem, which is a typical inverse
problem, should be theoretically viewed as an ill-posed problem,
where the mapping to be learned cannot be uniquely determined,
namely it is a 1-to-many mapping problem. In fact, theoretically,
given an input observed signal, we have an infinite number of com-
binations of clean speech and noise, which can form the particular
input signal. If we solve the ill-posed problem as if it were a 1-to-1
mapping problem, we may end up obtaining simply an average of
several potential candidate values, which is not necessarily itself a
correct value [14]. A traditional way of avoiding such an unwanted
average value is to first consider the distribution of the target vari-
able and then obtain an optimal estimate by appropriately handling
the estimation uncertainty.

In this study, we extend the conventional DNN-based enhance-
ment approaches and formulate the enhancement problem as a 1-
to-many mapping problem based on a DNN. We explicitly consider
uncertainty in the parameter estimation in the proposed framework
unlike conventional methods [11–13]. The key to dealing with this
issue is to incorporate i) a mechanism for modeling the 1-to-many
mapping based on a DNN and ii) a mechanism for forming a most
likely answer based on multiple candidates. To handle the 1-to-many
mapping problem while taking the uncertainty in the parameter esti-
mation into account, we utilize a neural network model called mix-
ture density network (MDN) [14], which, given a noisy input sig-
naly, can output a conditional distribution of a clean speech signal
s, p(s|y), in the form of a GMM. Then, using the distribution of
clean speechp(s|y) estimated by the MDN as a basis, we obtain
a final optimal estimate in a minimum mean square error (MMSE)
sense based on the VTS approach, taking advantage of the statistical
model-based feature enhancement.
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Fig. 1. Overview of proposed framework

2. PROPOSED FRAMEWORK
In this section, we first provide a brief overview of the proposed
framework in Section 2.1, and then introduce its essential compo-
nents in Sections 2.2. and 2.3.

2.1. Overview of proposed framework
Figure 1 shows the concept of the proposed framework. At each time
framet, given an input noisy speech featureyt, we first obtain the
distribution of a clean speech featurest in the form of GMM by us-
ing an MDN. Then, based on the estimated distribution of the clean
speech feature and the input noisy speech featureyt, we obtain an
optimal estimate ofst in the MMSE sense by using a model-based
approach that explicitly considers the physical interaction between
the clean speech feature, observed speech feature and the noise fea-
ture. In this study, for simplicity, we use the standard VTS approach
for the model-based enhancement. In the proposed framework, we
can take advantage of both the DNN and model-based feature en-
hancement, since the clean speech distribution is estimated in the
well known DNN framework, and the final output is formed with the
model-based feature enhancement approach whose performance and
behavior are easy for us to analyze and improve.

In the following section, we describe the essential components
of the proposed framework, namely an MDN and model-based en-
hancement, and show how it handles the overall enhancement pro-
cess.

2.2. Mixture density network (MDN)
In this subsection, we briefly review the concept and formulation of
the MDN, and show how it predicts the conditional distribution of
clean speech given noisy input speech. An MDN is a neural network
that maps the input observed noisy log Mel filterbank (hereafter,
FBANK) featureyt at time framet to a set of GMM parameters
representing the distribution of a clean speech FBANK featurest.
The GMM parameters to be estimated include mean vectorsµi(yt),
variancesσi(yt), and weightsαi(yt) as shown in Fig. 2.i is a mix-
ture component index.

In the actual process, first, the MDN converts the input vectoryt

using a multi-layer perceptron (MLP) with an output layer of linear
units, and obtain outputszt as:

zt = fθ(yt) (1)

wherefθ(·) corresponds to a set of transformations in the MLP. The
total number of network outputs, i.e., the dimension ofzt, is(c+2)×
M wherec corresponds to the dimension of the clean speech feature
to be obtained.M corresponds to the number of mixture components
in the GMM estimated by the MDN. Then,zt is partitioned into
three subsetsz(µ)

t,i , z(σ)
t,i , andz(α)

t,i , which correspond to the outputs
used to calculate the GMM mean vectors, variances and weights,
respectively.

zt = [z
(µ)
t,1 , . . . , z

(µ)
t,M , z

(σ)
t,1 , . . . , z

(σ)
t,M , z

(α)
t,1 , . . . , z

(α)
t,M ], (2)

Fig. 2. Training of mixture density network (with 2 mixture com-
ponents (i.e.M = 2)). All the output parameters, namelyσ1(yt),
σ2(yt),α1(yt), α2(yt), µ1(yt), andµ2(yt) are functions ofyt,
but (yt) was omitted from the figure for the sake of simplicity.

After the partitioning, each subset is passed through a set of specific
transformations for conversion to the GMM mean vectors, variances
and weights as:

µi(yt) = z
(µ)
t,i , (3)

σi(yt) = exp(z(σ)
t,i ), (4)

αi(yt) =
exp(z(α)

t,i )∑M
j=1 exp(z(α)

t,j )
, (5)

In the training stage of the MDN, these GMM parameters are
passed to a log likelihood calculator, which calculates the likelihood
of the clean speech FBANK featurest as:

p(st|yt) =

M∑
i=1

αi(yt)ϕi(st|yt), (6)

ϕi(st|yt) =
1

(2π)c/2σi(yt)
exp

{
−||st − µi(yt)||2

2σi(yt)2

}
(7)

The calculated likelihood is directly used to define an error func-
tion for the neural network by taking the negative logarithm of the
likelihood as:

E = −ln

{
M∑
i=1

αi(yt)ϕi(st|yt)

}
, (8)

The parameters of the MLP in the MDN will be optimized such
that the negative log likelihood in eq. (8) will be minimized. In the
test stage, using the optimized MDN, we estimate the distribution
of clean speechst, i.e., the GMM parameters at each time framet,
givenyt.
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Note that, if we limit the structure of the MDN so that it out-
puts only a single Gaussian component, and takes the mean vector
µ1(yt) as an estimate of clean speech feature, it becomes theoret-
ically equivalent to the conventional DNN-based feature enhance-
ment optimized with MMSE criterion [14]. However, by outputting
not only the mean vectorµ1(yt) but alsoσ1(yt) representing esti-
mation uncertainty, we may be able to further refine the clean speech
estimate based on the distribution, and obtain a better estimate than
the conventional method. Furthermore, by incorporating the idea
of themixturemodel, we can appropriately handle a complex clean
speech distribution and get to know how confident DNN is about the
current clean speech estimate.

2.3. Model-based feature enhancement based on MDN
In this study, we used the standard VTS approach [5, 6] to obtain
an optimal clean speech estimate based on the clean speech GMM
generated by the MDN.

In the VTS approach, the clean speech FBANK/MFCC feature
is modeled as a GMM. Conventionally, its parameters are trained
in advance with the maximum likelihood criterion by using training
data. The FBANK/MFCC feature of the background noise is repre-
sented as a single Gaussian and its parameters are estimated blindly
for each test utterance. In the test phase, the clean speech GMM
and the noise Gaussian are combined by using a VTS approximation
to form the probability density function of the observed signal. Af-
ter iteratively updating the parameters of the noise Gaussian and the
posterior probability of the clean speech GMM in the maximum like-
lihood sense, we can obtain an optimal estimate of the clean speech
feature in the MMSE sense.

With the proposed method, we simply replace the pretrained
GMM with the one estimated with the MDN. For example, with the
1st order VTS handling FBANK features, we can compose the mean
vector of thei-th GMM component of the observed siganal at time
framet, µ(o)

i,t , as:

µ
(o)
i,t = h(µi(yt),µ

(n,0)) +Hi(µ
(n,l) − µ(n,0)),

h(µi(yt),µ
(n,0)) = µi(yt) + log(1+ exp(µ(n,0) − µi(yt)),

whereµ(n,0) andµ(n,l) correspond to the initial estimate of the mean
vector of the Gaussian representing noise, and its current estimate.
Hi(µ

(n,l) − µ(n,0)) is a Gaussian dependent Jacobian matrix [5, 6].
In contrast to the conventional VTS, here we must compose a dif-
ferent GMM for the observed signal at each time framet, since the
clean speech GMM is time-varying as the termµi(yt) is explicitly
dependent on the time frame indext. the variance of the GMM can
be similarly updated.

3. EXPERIMENTS

In this section, we first analyze the behavior of the MDN to see how
appropriately it predicts clean speech distribution. Then, we evaluate
the proposed framework in comparison with a conventional DNN-
based feature enhancement method [11] where the aim is to map
the input signal to the clean speech. This conventional method is
hereafter referred to as conv-DNN.

3.1. Experimental conditions
3.1.1. Database and test acoustic environments
We used the Aurora-4 database to analyze the MDN behavior and
evaluate the proposed framework. Aurora-4 is based on the Wall
Street Journal 5k task, whose training data set comprises about 14

hours of speech including 83 speakers. To generate the training data,
6 different types of noise (street traffic, train stations, cars, bab-
ble, restaurants, airports) were artificially added to clean speech at
randomly selected signal-to-noise ratios (SNR) of between 10 and
20 dB. To train the conv-DNN and MDN, we used noisy training
data and the corresponding clean speech data. Note that for monitor-
ing the convergence of the conv-DNN and MDN learning process,
we randomly extracted 5% of the training data as a validation set,
and used the remaining 95% of the data for the actual training.

To test the algorithms, we used half of the development set of
Aurora-4 (*.wv1 set), which contains the same types of noise as the
training data but with SNRs of between 5 and 15 dB. The sampling
frequency of the data was 16 kHz.

3.1.2. Network structure and other related configurations
For both the conv-DNN and the MDN that we used in our proposed
approach, we employed a standard feed-forward DNN structure with
5 hidden layers of hyperbolic tangent activation functions. Although
any type of network structure could be employed, we chose this net-
work configuration for the sake of simplicity. We used a 40-order
FBANK feature and its 1st and 2nd derivatives as the input feature
of the conv-DNN and the MDN. Following the common practice
in speech processing, the feature of the current frame was spliced
with features within 5 left and 5 right context frames to form an in-
put feature vector consisting of 11 frames. The number of nodes in
the hidden layers was set at 2048. The output node of the conv-DNN
was set at 40, which corresponds to the vector dimension of the static
clean speech FBANK feature at the current frame. Similarly, the di-
mension of the mean vectorµi(yt) in the output of MDN was set
to 40. The number of mixture componentsM for the MDN was set
at 1 for behavior analysis in Section 3.2, and at 1 and 2 in Section
3.3. We first discriminatively pretrained the network [15], where we
trained the whole network every time we added one more hidden
layer. And then, it was fine-tuned with back-propagation. The conv-
DNN was trained with the MMSE criterion to directly estimate the
clean speech FBANK feature. The MDN was optimized by using
an Adam optimizer with an initial learning rate of 0.0005. We ob-
tained the initial noise statistics for the VTS by subtracting the initial
MMSE clean speech estimates from the observed signal in the power
spectral domain.

3.2. Behavior of MDN
We first analyzed the behavior of the MDN by setting the number of
mixture components at 1, and confirming whether it can appropri-
ately generate uncertainty information in the parameter estimation,
i.e. σ1(yt). The upper panel in Fig. 3 shows the contour of the
clean speech FBANK feature, the observed speech FBANK feature
and the mean of a Gaussianµ1(yt) estimated by the MDN, at the
5th Mel filterbank. We can see that the contour ofµ1(yt) closely
follows the clean speech FBANK feature contour in most cases but
occasionally deviates from them. We confirmed that this behavior
of µ1(yt) closely matches the FBANK feature contour estimated by
the conv-DNN.

The lower panel in Fig. 3 shows the contour ofµ1(yt) along
with the variance informationσ1(yt). The pink regions correspond
to ±2σ. By comparing the upper and lower panels, we can see that
the variance becomes appropriately large when the mean vector of
the Gaussianµ1(yt) deviates from the true clean speech FBANK
feature contour. The results of this experiment enabled us to confirm
that the MDN can appropriately output uncertainty in the parameter
estimation, which can be further utilized to determine an optimal
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Fig. 3. Behavior of MDN: (upper panel) Contour of clean speech, observed speech and mean of a Gaussian estimated by MDN (5th Mel
filterbank), (Lower panel) Contour of mean of Gaussian estimated by MDN and associated (time-varying)±2σ taken fromσ1(yt).

Table 1. Log spectral distance between a clean FBANK feature and
an unprocessed (i.e., observed) FBANK feature, an FBANK fea-
ture enhanced by the conventional DNN-based feature enhancement
method and an FBANK feature enhanced by the proposed method
(Average over all 1981 utterances).

Unproc. Conv. Prop. (M = 1) Prop. (M = 2)
0.96 0.53 0.44 0.42

clean speech estimate.

3.3. Results of model-based enhancement based on MDN
We also evaluated the degree to which we could improve the clean
speech estimate by performing VTS based on the GMM estimated
by the MDN. Table 1 shows the log spectral distance for each evalu-
ation target excluding non-speech segments. As the table shows, the
proposed framework (MDN-VTS) successfully improved the accu-
racy of the clean speech estimate and outperformed the conv-DNN
for bothM = 1 andM = 2, whereM is the number of mixture
components. We also testedM > 2 cases, but found that the perfor-
mance remained largely unchanged. This issue will be revisited in
more detail in future work.

4. RELATION TO PRIOR WORKS

Conventional DNN-based feature enhancement can be roughly cate-
gorized into two trends. One trend is to solve the enhancement prob-
lem as a regression problem between an observed feature and a clean
feature or a soft mask to obtain clean speech [11–13, 16]. Typically
these networks are trained with the MMSE criterion. A characteristic
of MMSE training is that uncertainty in the DNN-based regression
is not explicitly taken into account [14], as described in the introduc-

tion of this paper. The other trend is to treat the enhancement prob-
lem as a classification problem [17]. In such studies, the DNN is
typically trained with the cross entropy criterion, on the assumption
that each time frequency bin must belong solely to either speech or
noise, i.e. a binary mask. In this case, the classification uncertainty
is considered in the DNN output as a form of soft mask. However,
it is not clear how the value of the output soft mask is related to the
physical properties of the input observed signal such as the SNR, and
thus the network output is not easily interpreted. Consequently, it be-
comes difficult to obtain an optimal clean speech estimate based on
the network output. In contrast to these conventional methods, the
proposed approach explicitly takes the estimation uncertainty into
account, while the network output is easily interpreted and can be
further utilized to refine the clean speech estimate. An experimen-
tal comparison with other approaches [16,17] will be done in future
work.

5. CONCLUSIONS

In this paper, we extended conventional DNN-based feature en-
hancement to appropriately handle estimation uncertainty and ob-
tain an optimal clean speech estimate. To deal with the estimation
uncertainty, we employed an MDN, which can estimate the distri-
bution of clean speech based on input noisy speech. To obtain an
optimal MMSE estimate of the clean speech based on the estimated
distribution of the clean speech, we performed model-based feature
enhancement, i.e. VTS. In the experiments, we first confirmed the
behavior of the MDN and found that the variance of the estimated
clean speech GMM became appropriately large when the estimated
mean value deviated from the true target value. We also confirmed
that by employing model-based feature enhancement based on the
GMM estimated with the MDN, we could obtain a better clean
speech estimate than with the conventional DNN-based feature
enhancement approach.
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