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ABSTRACT

We propose a novel deep learning training criterion, named permu-
tation invariant training (PIT), for speaker independent multi-talker
speech separation, commonly known as the cocktail-party problem.
Different from the multi-class regression technique and the deep
clustering (DPCL) technique, our novel approach minimizes the
separation error directly. This strategy effectively solves the long-
lasting label permutation problem, that has prevented progress on
deep learning based techniques for speech separation. We evaluated
PIT on the WSJ0 and Danish mixed-speech separation tasks and
found that it compares favorably to non-negative matrix factoriza-
tion (NMF), computational auditory scene analysis (CASA), and
DPCL and generalizes well over unseen speakers and languages.
Since PIT is simple to implement and can be easily integrated and
combined with other advanced techniques, we believe improvements
built upon PIT can eventually solve the cocktail-party problem.

Index Terms— Permutation Invariant Training, Speech Separa-
tion, Cocktail Party Problem, Deep Learning, DNN, CNN

1. INTRODUCTION

Despite the significant progress made in dictating single-speaker
speech in the recent years [1, 2, 3, 4], the progress made in multi-
talker mixed speech separation and recognition, often referred to
as the cocktail-party problem [5, 6], has been less impressive. Al-
though human listeners can easily perceive separate sources in an
acoustic mixture, the same task seems to be extremely difficult
for automatic computing systems, especially when only a single
microphone recording of the mixed-speech is available [7, 8].

Nevertheless, solving the cocktail-party problem is critical to en-
able scenarios such as automatic meeting transcription, automatic
captioning for audio/video recordings (e.g., YouTube), and multi-
party human-machine interactions (e.g., in the world of Internet of
things (IoT)), where speech overlapping is commonly observed.

Over the decades, many attempts have been made to attack this
problem. Before the deep learning era, the most popular technique
was computational auditory scene analysis (CASA) [9, 10]. In this
approach, certain segmentation rules based on perceptual grouping
cues [11] are (often semi-manually) designed to operate on low-level
features to estimate a time-frequency mask that isolates the signal
components belonging to different speakers. This mask is then used
to reconstruct the signal. Non-negative matrix factorization (NMF)
[12, 13, 14] is another popular technique which aims to learn a set
of non-negative bases that can be used to estimate mixing factors
during evaluation. Both CASA and NMF led to very limited success
in separating sources in multi-talker mixed speech [7]. The most

successful technique before the deep learning era is the model based
approach [15, 16, 17], such as factorial GMM-HMM [18], that mod-
els the interaction between the target and competing speech signals
and their temporal dynamics. Unfortunately this model assumes and
only works under closed-set speaker condition.

Motivated by the success of deep learning techniques in single-
talker ASR [1, 2, 3, 4], researchers have developed many deep
learning techniques for speech separation in recent years. Typically,
networks are trained based on parallel sets of mixtures and their
constituent target sources [19, 20, 21, 22]. The networks are op-
timized to predict the source belonging to the target class, usually
for each time-frequency bin. Unfortunately, these works often focus
on, and only work for, separating speech from (often challenging)
background noise (or music) because speech has very different char-
acteristics than noise/music. Note that there are indeed works that
are aiming at separating multi-talker mixed speech (e.g., [22]). How-
ever, these works rely on speaker-dependent models by assuming
that the (often few) target speakers are known during training.

The difficulty in speaker-independent multi-talker speech sep-
aration comes from the label ambiguity or permutation problem
(which will be described in Section 2). Only two deep learning
based works [8, 23, 24] have tried to address and solve this harder
problem. In Weng et al. [8], which achieved the best result on the
dataset used in 2006 monaural speech separation and recognition
challenge [7], the instantaneous energy was used to solve the label
ambiguity problem and a two-speaker joint-decoder with speaker
switching penalty was used to separate and trace speakers. This
approach tightly couples with the decoder and is difficult to scale
up to more than two speakers due to the way labels are determined.
Hershey et al. [23, 24] made significant progress with their deep
clustering (DPCL) technique. In their work, they trained an em-
bedding for each time-frequency bin to optimize a segmentation
(clustering) criterion. During evaluation, each time-frequency bin
was first mapped into the embedding space upon which a cluster-
ing algorithm was used to generate a partition of the time-frequency
bins. Impressively, their systems trained on two-talker mixed-speech
perform well on three-talker mixed-speech. However, in their ap-
proach it is assumed that each time-frequency bin belongs to only
one speaker (i.e., a partition) due to the clustering step. Although
this is often a good approximation, it is known to be sub-optimal.
Furthermore, their approach is hard to combine with other tech-
niques such as complex-domain separation.

In this paper, we propose a novel training criterion, named per-
mutation invariant training (PIT), for speaker independent multi-
talker speech separation. Most prior arts treat speech separation as
either a multi-class regression problem or a segmentation (or clus-
tering) problem. PIT, however, considers it a separation problem
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(as it should be) by minimizing the separation error. More specifi-
cally, PIT first determines the best output-target assignment and then
minimizes the error given the assignment. This strategy, which is di-
rectly implemented inside the network structure, elegantly solves the
long-lasting label permutation problem that has prevented progress
on deep learning based techniques for speech separation.

We evaluated PIT on the WSJ0 and Danish mixed-speech sepa-
ration tasks. Experimental results indicate that PIT compares favor-
ably to NMF, CASA, and DPCL and generalizes well over unseen
speakers and languages. In other words, through the training pro-
cess PIT learns acoustic cues for source separation, which are both
speaker and language independent, similar to humans. Since PIT is
simple to implement and can be easily integrated and combined with
other advanced techniques we believe improvements built upon PIT
can eventually solve the cocktail-party problem.

2. MONAURAL SPEECH SEPARATION

The goal of monaural speech separation is to estimate the indi-
vidual source signals in a linearly mixed, single-microphone sig-
nal, in which the source signals overlap in the time-frequency
domain. Let us denote the S source signal sequences in the
time domain as xs(t), s = 1, · · · , S and the mixed signal se-
quence as y(t) =

∑S
s=1 xs(t). The corresponding short-time

Fourier transformation (STFT) of these signals are Xs(t, f) and
Y(t, f) =

∑S
s=1 Xs(t, f), respectively, for each time t and fre-

quency f . Given Y(t, f), the goal of monaural speech separation is
to recover each source Xs(t, f).

In a typical setup, it is assumed that only STFT magnitude spec-
tra is available. The phase information is ignored during the sep-
aration process and is used only when recovering the time domain
waveforms of the sources.

Obviously, given only the magnitude of the mixed spectrum
|Y(t, f)|, the problem of recovering |Xs(t, f)| is ill-posed, as
there are an infinite number of possible |Xs(t, f)| combinations
that lead to the same |Y(t, f)|. To overcome this core prob-
lem, the system has to learn from some training set S that con-
tains pairs of |Y(t, f)| and |Xs(t, f)| to look for regularities.
More specifically, we train a deep learning model g(·) such that
g (f(|Y|) ; θ) = |X̃s|, s = 1, · · · , S, where θ is a model parame-
ter vector, and f(|Y|) is some feature representation of |Y|. For
simplicity and clarity we have omitted, and will continue to omit,
time-frequency indexes when there is no ambiguity.

It is well-known (e.g., [19]) that better results can be achieved if,
instead of estimating |Xs| directly, we first estimate a set of masks
Ms(t, f) using a deep learning model h (f(|Y|); θ) = M̃s(t, f)

with the constraint that M̃s(t, f) ≥ 0 and
∑S

s=1 M̃s(t, f) = 1 for
all time-frequency bins (t, f). This constraint can be easily satisfied
with the softmax operation. We then estimate |Xs| as |X̃s| = M̃s ◦
|Y|, where ◦ is the element-wise product of two operands. This
strategy is adopted in this study.

Note that since we first estimate masks, the model parameters
can be optimized to minimize the mean square error (MSE) between
the estimated mask M̃s and the ideal ratio mask (IRM) Ms = |Xs|

|Y| ,

Jm =
1

T × F × S

S∑
s=1

‖M̃s −Ms‖2,

where T and F denote the number of time frames and frequency
bins, respectively. This approach comes with two problems. First,
in silence segments, |Xs| = 0 and |Y| = 0, so that Ms is not well

defined. Second, what we really care about is the error between the
estimated magnitude and the true magnitude of each source, while a
smaller error on masks may not lead to a smaller error on magnitude.

To overcome these limitations, recent works [19] directly mini-
mize the mean squared error (MSE)

Jx =
1

T × F × S

S∑
s=1

‖ ˜|Xs| − |Xs|‖2

between the estimated magnitude and the true magnitude. Note that
in silence segments |Xs| = 0 and |Y| = 0, and so the accuracy
of mask estimation does not affect the training criterion for those
segments. In this study, we estimate masks M̃s which minimize Jx.

3. PERMUTATION INVARIANT TRAINING
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Fig. 1. The two-talker speech separation model with permutation
invariant training.

Except DPCL [23, 24], all other recent speech separation works
treat the separation problem as a multi-class regression problem.
In their architecture, N frames of feature vectors of the mixed sig-
nal |Y| are used as the input to some deep learning models, such
as deep neural networks (DNNs), convolutional neural networks
(CNNs), and long short-term memory (LSTM) recurrent neural net-
works (RNNs), to generate one (often the center) frame of masks
for each talker. These masks are then used to construct one frame of
single-source speech |X̃1| and |X̃2|, for source 1 and 2, respectively.

During training we need to provide the correct reference (or tar-
get) magnitude |X1| and |X2| to the corresponding output layers for
supervision. Since the model has multiple output layers, one for each
mixing source, and they depend on the same input mixture, reference
assigning can be tricky especially if the training set contains many
utterances spoken by many speakers. This problem is referred to as
the label ambiguity (or permutation) problem in [8, 23]. Due to this
problem, prior arts perform poorly on speaker-independent multi-
talker speech separation. It was believed that speaker-independent
multi-talker speech separation is not feasible [25].

The solution proposed in this work is illustrated in Figure 1.
There are two key inventions in this novel model: permutation in-
variant training (PIT) and segment-based decision making.

In our new model the reference source streams are given as a set
instead of an ordered list. In other words, the same training result
is obtained, no matter in which order these sources are listed. This
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behavior is achieved with PIT highlighted inside the dashed rectan-
gular in Figure 1. In order to associate references to the output lay-
ers, we first determine the (total number of S!) possible assignments
between the references and the estimated sources. We then compute
the total MSE for each assignment, which is defined as the combined
pairwise MSE between each reference |Xs| and the estimated source
|X̃s|. The assignment with the least total MSE is chosen and the
model is optimized to reduce this particular MSE. In other words we
simultaneously conduct label assignment and error evaluation. Sim-
ilar to the prior arts, PIT uses as input N successive frames (i.e., an
input meta-frame) of features to exploit the contextual information.
Different from the prior arts, the output of the PIT is also a window
of frames. With PIT, we directly minimize the separation error at the
meta-frame level. Although the number of speaker assignments is
factorial in the number of speakers, the pairwise MSE computation
is only quadratic, and more importantly the MSE computation can
be completely ignored during evaluation.

During inference, the only information available is the mixed
speech. Speech separation can be directly carried out for each in-
put meta-frame, for which an output meta-frame with M frames
of speech is estimated for each stream. The input meta-frame is
then shifted by one or more frames. Due to the PIT training crite-
rion, output-to-speaker assignment may change across frames. In the
simplest setup, we can just assume they do not change when recon-
structing sources. Better performance may be achieved if a speaker-
tracing algorithm is applied on top of the output of the network.

Once the relationship between the outputs and source streams
are determined for each output meta-frame, the separated speech can
be estimated, taking into account all meta-frames by, for example,
averaging the same frame across meta-frames.

4. EXPERIMENTAL RESULTS

4.1. Datasets

We evaluated PIT on the WSJ0-2mix and Danish-2mix datasets. The
WSJ0-2mix dataset was introduced in [23] and was derived from
WSJ0 corpus [26]. The 30h training set and the 10h validation
set contains two-speaker mixtures generated by randomly selecting
speakers and utterances from the WSJ0 training set si tr s, and mix-
ing them at various signal-to-noise ratios (SNRs) uniformly chosen
between 0 dB and 5 dB. The 5h test set was similarly generated using
utterances from 16 speakers from the WSJ0 validation set si dt 05
and evaluation set si et 05.

The Danish-2mix dataset was constructed from the Danish cor-
pus [27], which consists of approximately 560 speakers each speak-
ing 312 utterances with average utterance duration of approximately
5 sec. The dataset was constructed by randomly selecting a set of
45 male and 45 female speakers from the corpus, and then allocat-
ing 232, 40, and 40 utterances from each speaker to generate mixed
speech in the training, validation and closed-condition (CC) (seen
speaker) test set, respectively. 40 utterances from each of another
45 male and 45 female speakers were randomly selected to construct
the open-condition (OC) (unseen speaker) test set. Speech mixtures
were constructed in the way similar to the WSJ0-2mix dataset, but
all mixed with 0 dB - the hardest condition. We constructed 10k and
1k mixtures in total in the training and validation set, respectively,
and 1k mixtures for each of the CC and OC test sets. The Danish-
3mix (three-talker mixed speech) dataset was constructed similarly.

In this study we focus on the WSJ0-2mix dataset so that we can
directly compare PIT with published state-of-the-art results obtained
using other techniques.

4.2. Models

Our models were implemented using the Microsoft Cognitive
Toolkit (CNTK) [28]. The feed-forward DNN (denoted as DNN)
has three hidden layers each with 1024 ReLU units. In (inChannel,
outChannel)-(strideW, strideH) format, the CNN model has one
(1, 64)− (2, 2), four (64, 64)− (1, 1), one (64, 128)− (2, 2), two
(128, 128)− (1, 1), one (128, 256)− (2, 2), and two (256, 256)−
(1, 1) convolution layers with 3 × 3 kernels, a pooling layer and a
1024-unit ReLU layer. The input to the models is the stack (over
multiple frames) of the 257-dim STFT spectral magnitude of the
speech mixture, computed using STFT with a frame size of 32ms
and 16ms shift. There are S output streams for S-talker mixed
speech. Each output stream has a dimension of 257×M , where M
is the number of frames in the output meta-frame. In our study, the
validation set is only used to control the learning rate.

4.3. Training behavior
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Fig. 2. MSE over epochs on the Danish (left) and WSJ0 (right) train-
ing and validation sets with conventional training and PIT.

In Figure 2 we plotted the DNN training progress as measured
by the MSE on the training and validation set with conventional
training and PIT on the mixed speech datasets described in sub-
section 4.1. From the figure we can see clearly that the validation
MSE hardly decreases with the conventional approach due to the la-
bel permutation problem discussed in [8, 23]. In contrast, training
converges quickly to a much better MSE for both two- and three-
talker mixed speech when PIT is used.

4.4. Signal-to-distortion ratio improvement

We evaluated PIT on its potential to improve the signal-to-distortion
ratio (SDR) [29], a metric widely used to evaluate speech enhance-
ment performance.

In Table 1 we summarized the SDR improvement in dB from
different separation configurations for two-talker mixed speech in
closed condition (CC) and open condition (OC). In these experi-
ments each frame was reconstructed by averaging over all output
meta-frames that contain the same frame. In the default assignment
setup it is assumed that there is no output-speaker switch across
frames (which is not true). This is the improvement achievable
using PIT without any speaker tracing. In the optimal assignment
setup, the output-speaker assignment for each output meta-frame is
determined based on mixing streams. This reflects the separation
performance within each segment (meta-frame) and is the improve-
ment achievable when the speakers are correctly traced. The gap
between these two values indicates the contribution from speaker
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Table 1. SDR improvements (dB) for different separation methods
on the WSJ0-2mix dataset.

Method Input\Output Opt. Assign Def. Assign
window CC OC CC OC

Oracle NMF [23] - - - 5.1 -
CASA [23] - - - 2.9 3.1
DPCL [23] 100\100 6.5 6.5 5.9 5.8
DPCL+ [24] 100\100 - - - 10.3

PIT-DNN 101\101 6.2 6.0 5.3 5.2
PIT-DNN 51\51 7.3 7.2 5.7 5.6
PIT-DNN 41\7 10.1 10.0 -0.3 -0.6
PIT-DNN 41\5 10.5 10.4 -0.6 -0.8

PIT-CNN 101\101 8.4 8.6 7.7 7.8
PIT-CNN 51\51 9.6 9.7 7.5 7.7
PIT-CNN 41\7 10.7 10.7 -0.6 -0.7
PIT-CNN 41\5 10.9 10.9 -0.8 -0.9

IRM - 12.3 12.5 12.3 12.5

Table 2. SDR improvements (dB) based on optimal assignment for
DNNs trained with Danish-2mix.

Method Input\Output
window CC OC WSJ0

OC

IRM - 17.2 17.3 13.2

PIT-DNN 101\101 9.00 8.61 4.29
PIT-DNN 61\61 9.87 9.44 5.17
PIT-DNN 31\31 11.1 10.7 6.18
PIT-DNN 31\7 14.0 13.8 9.03
PIT-DNN 31\5 14.1 13.9 9.29

tracing. As a reference, we also provided the IRM result which is
the oracle and upper bound achievable on this task.

From the table we can make several observations. First, without
speaker tracing (def. assign) PIT can achieve similar and better per-
formance than the original DPCL [23], respectively, with DNN and
CNN, but under-performs the more complicated DPCL+ [24]. Note
that, PIT is much simpler than even the original (simpler) DPCL and
we did not fine-tune architectures and learning procedures as done in
[24]. Second, as we reduce the output window size we can improve
the separation performance within each window and achieve better
SDR improvement if speakers are correctly traced (opt. assign).
However, when output window size is reduced, the output-speaker
assignment changes more frequently as indicated by the poor de-
fault assignment performance. Speaker tracing thus becomes more
important given the larger gap between the opt. assign and def. as-
sign. Fourth, PIT generalizes well on unseen speakers since the per-
formances on the open and closed conditions are very close. Fifth,
powerful models such as CNN consistently outperforms DNNs but
the gain diminishes when the output window size is small.

In Table 2 we summarized the SDR improvement in dB with op-
timal assignment from different configurations for DNNs trained on
Danish-2mix. We also report SDR improvement using a dataset con-
structed identical to Danish-2mix but based on the si tr s data from
WSJ0. Besides the findings obtained in Table 1, an interesting ob-
servation is that although the system has never seen English speech,
it performs remarkably well on this WSJ0 dataset when compared to
the IRM (oracle) values. These results indicate that the separation
ability learned with PIT generalizes well not only across speakers
but also across languages.

5. CONCLUSION AND DISCUSSION

In this paper, we have described a novel permutation invariant train-
ing technique for speaker-independent multi-talker speech separa-
tion. To the best of our knowledge this is the first successful work
that employs the separation view (and criterion) of the task1, instead
of the multi-class regression or segmentation view that are used in
prior arts. This is a big step towards solving the important cocktail-
party problem in a real-world setup, where the set of speakers are
unknown during the training time.

Our experiments on two-talker mixed speech separation tasks
demonstrate that PIT trained models generalize well to unseen
speakers and languages. Although our results are mainly on two-
talker separation tasks, PIT can be easily and effectively extended to
the three-talker case as shown in figure 2.

In this paper we focused on PIT - the key technique that enables
training for the separation of multi-talker mixed speech. PIT is much
simpler yet performs better than the original DPCL [23] that contains
separate embedding and clustering stages.

Since PIT, as a training technique, can be easily integrated and
combined with other advanced techniques, it has great potential for
further improvement. We believe improvements can come from
work in the following areas:

First, due to the change of output-speaker assignment across
frames, there is a big performance gap between the optimal output-
speaker assignment and the default assignment, especially in the
same-gender case and when the output window size is small. This
gap can be reduced with separate speaker tracing algorithms that ex-
ploit the overlapping frames and speaker characteristics (e.g., simi-
larity) in output meta-frames. It is also possible to train an end-to-
end system in which speaker tracing is directly built into the model,
e.g., by applying PIT at utterance level. We will report these results
in other papers.

Second, we only explored simple DNN/CNN structures in this
work. More powerful models such as bi-directional LSTMs, CNNs
with deconvolution layers, or even just larger models may further
improve the performance. Hyper-parameter tuning will also help
and sometimes lead to significant performance gain.

Third, in this work we reconstructed source streams from spec-
tral magnitude only. Unlike DPCL, PIT can be easily combined with
reconstruction techniques that exploit complex-valued spectrum to
further boost performance.

Fourth, the acoustic cues learned by the model are largely
speaker and language independent. It is thus possible to train a
universal speech separation model using speech in various speakers,
languages, and noise conditions.

Finally, although we focused on monaural speech separation in
this work, the same technique can be deployed in the multi-channel
setup and combined with techniques such as beam-forming due to
its flexibility. In fact, since beam-forming and PIT separate speech
using different information, they complement with each other. For
example, speaker tracing may be much easier when beam-forming
is available.
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