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ABSTRACT

An accurate estimation of the broadband input signal-to-noise ra-
tio (SNR) is a prerequisite for many hearing-aid algorithms. An
extensive comparison of three SNR estimation algorithms was per-
formed. Moreover, the influence of the duration of the analysis win-
dow on the SNR estimation performance was systematically investi-
gated. The most accurate approach utilized an estimation of the clean
speech power spectral density (PSD) and the noisy speech power
across a sliding window of 1280ms and achieved an total SNR esti-
mation error below 3 dB across a wide variety of background noises
and input SNRs.

Index Terms— Signal-to-noise ratio estimation, noise power
estimation, hearing-aid algorithms

1. INTRODUCTION

Many hearing-aid algorithms require general knowledge about the
acoustic environment. For example, it has been shown that the ben-
efit of fast-acting wide dynamic range compression (WDRC) over
linear amplification increases with decreasing SNR [1]. Moreover,
a more recent modeling study suggests that using SNR-specific time
constants might benefit speech intelligibility and quality [2]. Thus, it
would be advantageous to adjust the time constants used in hearing-
aid WDRC based on the a priori SNR, which is defined as the ratio
of the speech to the noise power.

Whereas the task of estimating the SNR in individual discrete
Fourier transform (DFT) bins is well studied for the application of
speech enhancement [3, 4, 5, 6, 7], there has been less focus on de-
riving the broadband SNR given the noisy speech signal. The log-
energy histogram of noisy speech reveals a bimodal distribution [8],
reflecting both the contribution of noise and noisy speech. This ob-
servation is utilized by the SNR estimator developed by the National
Institute of Standards and Technology (NIST) [9]. However, the
NIST algorithm measures the peak SNR, and thus overestimates the
true SNR. Another approach, termed waveform amplitude distribu-
tion analysis (WADA), examines the amplitude distribution of noisy
speech [10]. Although the WADA approach was shown to be more
accurate than the NIST algorithm [10], the background noise is as-
sumed to follow a Gaussian distribution. Consequently, a violation
of this assumption is likely to degrade the performance of the algo-
rithm.

An obvious alternative is the application of speech enhance-
ment algorithms which typically estimate the noise PSD. Given the
noisy speech power and an estimation of the noise PSD, the input
SNR can be estimated. Recently, several noise PSD estimators were
compared in terms of their ability to estimate the broadband input

SNR [11]. Among all tested noise PSD estimators, the approaches
proposed by Gerkmann and Henrdiks [12] and Hendriks et al. [13]
provided the most accurate results. However, instead of using the
noise PSD directly for SNR estimation, it can also be used to esti-
mate the clean speech PSD by employing a minimum mean-square
error (MMSE)-based estimator [3, 14]. This would allow the use
of the decision-directed approach, which was shown to substantially
reduce the amount of speech distortions in speech enhancement ap-
plications [3]. The input SNR could subsequently be derived from
the noisy speech power and the estimated clean speech PSD.

In contrast to speech enhancement applications, SNR-specific
hearing-aid processing, such as WDRC strategies, do not require an
estimation of the SNR for individual DFT bins. Depending on the
desired temporal resolution, the SNR estimation can be integrated
across time, which is likely to improve the performance. Thus, from
an application point of view, it would be valuable to investigate the
influence of the temporal resolution on SNR estimation accuracy.
However, previous studies focused on file-based evaluation [9, 10,
11] and, thus, the impact of the window duration on SNR estimation
performance has not yet been clarified.

The goal of the present study was to compare different ap-
proaches to estimate the true broadband SNR of noisy speech mix-
tures. Specifically, the benefit of deriving the clean speech PSD
using an MMSE-based estimator was tested by comparing it to the
performance of a noise PSD estimator and to the WADA algorithm.
An extensive evaluation was performed using a variety of stationary
and non-stationary noise types mixed with speech at a wide range
of input SNRs. A particular focus was to investigate the influence
of the temporal resolution on the SNR estimation performance. The
accuracy of the estimated SNR was quantified by using the log-error
distortion [15] measure, which allows to investigate the amount of
over- and underestimation with respect to the true SNR.

2. BROADBAND SNR ESTIMATION

For a given window sizeWξ, the broadband a priori SNR ξdB[`] for
time frame ` was defined as the ratio of the speech PSD σ2

S[`, f ] to
the noise PSD σ2

N[`, f ] integrated across all frequency bins f

ξdB[`] = 10 log10

min

max


∑
f

σ2
S[`, f ]∑

f

σ2
N[`, f ]

, ξmin

 , ξmax


 .

(1)
The dynamic range of ξdB[`] was limited by an lower ξmin and an
upper bound ξmax. Obviously both σ2

S[`, f ] and σ2
N[`, f ] are un-

known and thus, ξdB[`] had to be blindly estimated from the noisy
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speech mixture. Given an estimation of the SNR in the linear domain
ξ̂[`], the final SNR in dB was determined by

ξ̂dB[`] = 10 log10

(
min

(
max

(
ξ̂[`], ξmin

)
, ξmax

))
. (2)

In the following, the three tested SNR estimation approaches are
described.

2.1. WADA

The WADA algorithm [10] operates in the time domain and was used
to analyze the amplitude distribution of the noisy speech mixture.
To obtain an SNR estimation for a specific temporal resolution, the
time-domain signal was segmented into overlapping frames and the
SNR ξ̂[`] was estimated for each frame separately by the WADA
algorithm.

2.2. Noise PSD estimation

Given the short-time discrete Fourier transform (STFT) representa-
tion of noisy speech X[λ, k] with λ and k indexing the time frame
and the frequency bin, respectively, the approach by Hendriks et
al. [13] was used to estimate the noise PSD denoted by σ̂2

N[λ, k].
The STFT was always computed with a Hamming windowWSTFT

of 20ms duration and a step size SSTFT of 10ms. Subsequently the
SNR ξ̂[`] was estimated by integrating the noisy speech power and
the estimated noise PSD across all frequency bins and L time frames

ξ̂[`] = max


L−1∑
m=0

∑
k

|X[`R+m, k]|2

L−1∑
m=0

∑
k

σ̂2
N[`R+m, k]

− 1, ε

 , (3)

where L and the step size R were adjusted to match the predefined
window sizeWξ of the a priori SNR. A lower bound εwas employed
to avoid negative values of ξ̂[`].

2.3. Speech PSD estimation

Instead of estimating the SNR directly from the estimated noise PSD
σ̂2
N[λ, k], the MMSE estimator by Erkelens et al. [14] was used to

obtain an estimation of the clean speech PSD σ̂2
S[λ, k]. This esti-

mator assumes that the distribution of clean DFT coefficients can be
characterized by a generalized Gamma distribution with the two pa-
rameters γ and ν [14]. Moreover, it utilizes the decision-directed
approach [3], which incorporates a non-linear smoothing, and thus,
allows for a more accurate estimation of the a priori SNR [16]. Sim-
ilar to Sect. 2.2, the noisy speech power and the speech PSD was
integrated across all frequency bins and a predefined number of time
frames L to match the window sizeWξ of the a priori SNR

ξ̂[`] =
1

max


L−1∑
m=0

∑
k

|X[`R+m, k]|2

L−1∑
m=0

∑
k

σ̂2
S[`R+m, k]

− 1, ε


. (4)

Table 1. Tested window durations Wξ and step sizes Sξ for the a
priori SNR as well as the corresponding algorithm settings.

Wξ Sξ WSTFT SSTFT L R

20ms 10ms 20ms 10ms 2 1
40ms 20ms 20ms 10ms 4 2
80ms 40ms 20ms 10ms 8 4
160ms 80ms 20ms 10ms 16 8
320ms 160ms 20ms 10ms 32 16
640ms 320ms 20ms 10ms 64 32
1280ms 640ms 20ms 10ms 128 64
2560ms 1280ms 20ms 10ms 256 128
5120ms 2560ms 20ms 10ms 512 256

3. EVALUATION

3.1. Stimuli

Noisy speech with a sampling frequency of 16 kHz was created by
corrupting clean speech with background noise from the DEMAND
database [17]. The DEMAND database consists of 18 different noise
types that are classified into 6 categories (domestic, office, public,
transportation, street and nature), spanning across a wide variety of
both stationary and non-stationary noise types. Each noisy speech
mixture consisted of an initial noise-only segment of 100ms dura-
tion followed by 5 randomly selected sentences from the TIMIT cor-
pus [18] that were separated by 100ms long noise-only segments.

For evaluation, 500 noisy speech mixtures with an average dura-
tion of 15.9 sec were created for each of the 18 background noises
and 9 different SNRs (−15,−10,−5, 0, 5, 10, 15, 20 and 25 dB),
leading to a set of 81000 mixtures. The accuracy of the SNR es-
timation ξ̂dB was evaluated across all N time frames of a given
noisy speech mixture by the log-error distortion measure [15], which
allowed to investigate the amount of over- and underestimation in
comparison to the true SNR ξdB

LogErrorTotal = LogErrorOver + LogErrorUnder (5)

with

LogErrorOver =
1

N

N∑
`=1

∣∣∣min(0, ξdB[`]− ξ̂dB[`])
∣∣∣ (6)

LogErrorUnder =
1

N

N∑
`=1

∣∣∣max(0, ξdB[`]− ξ̂dB[`])
∣∣∣ . (7)

3.2. Algorithm settings

All three SNR estimation methods were tested with 9 different win-
dow durationsWξ ranging from 20ms to 5120ms with 50% over-
lap, as listed in Tab. 1. The noise PSD and the speech PSD estima-
tion was always carried out with a fixed window durationWSTFT of
20ms with 50% overlap. In order to obtain the predefined tempo-
ral resolution defined byWξ, the integration of the SNR estimation
across time, according to Eq. (3) and Eq. (4), was controlled by the
two parameters L and R.

The noise PSD approach by Hendriks et al. was configured with
the default parameters reported in [13] and initialized for each noisy
speech mixture by averaging the PSD across the initial noise-only
segment of 100ms. The MMSE estimator that was used to obtain the
clean speech PSD was configured with the two generalized Gamma
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Fig. 1. SNR estimation error of the WADA algorithm (top panels), the noise PSD approach (middle panels) and the speech PSD method
(bottom panels) as a function of the frame size and the input SNR averaged across all noise types. Left panels: total SNR estimation error,
middle panels: SNR overestimation, right panels: SNR underestimation.

parameters γ = 1 and ν = 0.6 [14]. Moreover, the smoothing
factor α used by the decision-directed approach corresponded to a
time constant of 0.792 s. Finally, the lower and upper SNR bounds
ξmin and ξmax corresponded to −30 and 30 dB.

4. RESULTS

Figure 1 shows the SNR estimation performance of the WADA algo-
rithm (top panels), the noise PSD approach (middle panels) and the
speech PSD method (lower panels) as a function of the window du-
ration and the input SNR. The total error is shown in the left panels,
whereas the amount of over- and underestimation is presented in the
middle and the right panels, respectively.

It can be seen that the WADA algorithm produced the largest de-
viations from the true SNR (top left panel), in particular for window
durations shorter than 1280ms. When a longer window was used,
the WADA algorithm was most accurate for positive input SNRs,
which is in line with the results presented in [10]. The noise PSD
approach substantially reduced the total SNR estimation error (mid-
dle left panel) for positive input SNRs when a window size of at
least 320ms was used. However, the estimation errors for nega-

tive input SNRs were still in the range of 10 dB. Among all tested
approaches, the speech PSD method achieved the lowest SNR es-
timation errors (bottom left panel). The total log-error was within
4 dB for a wide range of input SNRs and window durations. Gen-
erally, all approaches tended to overestimate the true SNR (middle
panels), which is apparent when comparing the amount of overesti-
mation with the amount of underestimation (right panels).

The total SNR estimation error averaged across all input SNRs
is shown in Fig. 2 as a function of the window size. An accurate esti-
mation of the input SNR was quite challenging when a short window
duration was used, which is indicated by an average estimation error
of up to 12 dB. Moreover, it can be seen that the SNR estimation
error decreased systematically for all three methods with increasing
window duration. Whereas the WADA algorithm produced the low-
est estimation error of 4.5 dB for the longest window of 5120ms,
the performance of both the noise PSD and the speech PSD method
saturated for a window duration of 1280ms, yielding estimation er-
rors of 4.1 dB and 2.8 dB, respectively.

The SNR estimation of the three tested methods is illustrated
in Fig. 3 for a noisy speech mixture at 0 dB SNR. The top panel
shows the time waveform, whereas the lower panels presents the a
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Fig. 2. Total SNR estimation error of the WADA algorithm, the noise
PSD approach and the speech PSD method as a function of the frame
size averaged across all SNRs and noise types. The lower part of the
bars reflect the SNR overestimation, while the upper part of the bars
indicate the SNR underestimation.

priori SNR along with the SNR estimation for a temporal window of
320ms duration. It can be seen that the speech PSD estimator most
closely followed the a priori known SNR. In contrast, the WADA
approach frequently underestimated the a priori SNR.

5. DISCUSSION AND CONCLUSION

This study presented a systematic comparison of three algorithms to
estimate the broadband input SNR of noisy speech mixtures across
a wide range of noise types and input SNRs. Instead of using the
estimated noise PSD directly to determine the input SNR, as pre-
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Fig. 3. Illustration of the SNR estimation for a temporal win-
dow of 320ms duration. The top panel shows a sequence of 5
TIMIT sentences mixed with subway noise at 0 dB SNR. The bot-
tom panel presents the a priori known SNR and the estimation using
the WADA algorithm, the noise PSD approach and the speech PSD
method.

sented in [11], the most accurate results were obtained by using an
estimation of the clean speech PSD. It seems that the MMSE esti-
mator proposed by Erkelens et al. [14] combined with the non-linear
smoothing provided by the decision-directed approach allowed for
an accurate estimation of the clean speech DFT coefficients, and sub-
sequently, produced the most accurate estimation of the broadband
input SNR across a wide range of acoustic conditions.

The SNR estimation performance increased with increasing
window duration for all tested approaches. Whereas the WADA
algorithm produced the lowest error of 4.5 dB with the longest anal-
ysis window of 5120ms, the performance of both the noise PSD
and the speech PSD approach saturated around an error of 4.1 dB
and 2.8 dB for a window of 1280ms duration. In general, all tested
estimation algorithms showed the tendency to overestimate the true
SNR. This bias could potentially be reduced by a non-linear map-
ping function, e.g. as presented in [11]. However, such a mapping
function may only be suitable if the speech material used to create
the mapping is known a priori and does not change.

A recent study analyzed broadband SNRs in realistic environ-
ments recorded by hearing aid users [19]. The underlying SNR was
estimated using a manual noise tracking procedure. The broadband
SNR estimator based on the speech PSD presented here could be
used to replace the manual procedure. This would enable a fully au-
tomated analysis of a large number of recordings. Moreover, future
work will incorporate the presented SNR estimator into a hearing-
aid WDRC system in order to select SNR-specific time constants
and to evaluate the effects of such scheme on speech intelligibility,
perceived quality and listening effort.
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