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ABSTRACT

Since natural acoustic signals like speech or music exhibit a highly
varying temporal structure, signal enhancement and feature extrac-
tion algorithms benefit from segmentation procedures which take the
underlying signal structure into account. In this paper we present a
novel unsupervised segmentation procedure for music signals which
relies on an explained variance criterion in the eigenspace of the
constant-Q spectral domain. The procedure is used in the context
of a spectral complexity reduction method which mitigates effects
of cochlear hearing loss. It is compared to a segmentation based on
equidistant boundaries. The results demonstrate that the proposed
segmentation procedure gives an improvement in terms of signal-
to-artefacts ratio in comparison to corresponding equidistant bound-
aries segmentation.

Index Terms— spectral analysis, signal reconstruction, signal
compression, change point detection

1. INTRODUCTION

Natural acoustic signals like speech or music exhibit a highly vary-
ing temporal structure. Therefore, signal enhancement or feature
extraction algorithms can benefit from a segmentation step which
subdivides a signal into meaningful sections. For instance, in [1] an
adaptive segmentation scheme for speech enhancement systems is
proposed which controls the segment length based on the local signal
stationarity. Similarly, in [2] a non-stationarity detector was devel-
oped which segments speech into stationary and transient parts and
thus allows to control the trade-off between temporal and spectral
resolution in the discrete Fourier transform domain. This leads to an
improved preservation of transient speech sounds in noise reduction
algorithms. For applications in speech recognition a speech signal is
typically segmented in a phoneme-based fashion [3]. Similarly, mu-
sic signals can be segmented on different temporal scales according
to the application at hand. For instance, algorithms for note onset
detection [4, 5, 6] are required to perform music transcription [7] or
tempo estimation [8]. On a more macroscopic level music can be
segmented into structurally meaningful parts, such as verse, chorus,
and bridge using, for instance, self-similarity matrices [9] or hidden
Markov models [10, 11]. This kind of segmentation facilitates tasks
like indexing or remixing.
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Fig. 1. Block diagram illustrating the steps for performing seg-
mentation and dimensionality reduction in the spectral domain of
music signals. The input signal is first analyzed using a spectral
transform. The resulting spectral vectors are stored in a matrix X ,
on which a segmentation algorithm is performed resulting in non-
overlapping blocks U (0), . . . , U (M−1). After dimensionality reduc-
tion the blocks are approximated by Û (0), . . . , Û (M−1). The result-
ing rank-approximation stored in matrix X̂ is then transformed back
to the reduced signal.

Apart from these applications, segmentation of music signals
can also be beneficial for music processing algorithms. Recently, in
[12] a method was proposed which reduces the spectral complexity
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of music signals using principal component analysis (PCA) for lis-
teners with cochlear hearing loss. Similarly as in the aforementioned
applications this procedure requires a segmentation step which sub-
divides the signal into meaningful blocks in the time-frequency do-
main before PCA is performed. This segmentation was performed
either using blocks of fixed length or by means of note onsets ob-
tained from MIDI files. Although the former procedure does not
require any prior information and can be applied in a real-world
scenario, it does not take the underlying signal structure into ac-
count and thus is prone to smearing temporally important proper-
ties like note onsets. Hence, in this work we present a novel un-
supervised segmentation procedure which detects change points in
the eigenspace structure of the constant-Q spectral representation
of music signals considering the degree of explained variance. Al-
though statistical change point detection is a well-studied topic in
the literature and numerous related methods have been proposed for
general multivariate time series both in the time domain [13, 14]
and spectral domain [15, 16, 17, 18, 19, 20], change point detec-
tion in the eigenspace of the time-frequency domain has not been
studied before. The proposed method is evaluated in terms of signal
quality measures such as the signal-to-interference ratio (SIR) and
the signal-to-artefacts ratio (SAR) as proposed in [21]. The block-
diagram for the general segmentation scheme is given in Figure 1.

The remainder of this paper is organized as follows. In Section
2 we present the general signal processing scheme. Section 3 intro-
duces the proposed segmentation procedure based on the degree of
explained variance in the constant-Q spectral eigenspace. In Section
4 the evaluation setup is described. The results are presented and
discussed in Section 5. Conclusions are drawn in Section 6.

2. SPECTRAL COMPLEXITY REDUCTION

2.1. Spectral Analysis and Signal Reconstruction

We consider a discrete-time signal x(n) with time index n, which
is sampled at the sampling frequency fs. It contains a leading
voice signal t(n) and an accompaniment signal i(n) such that
x(n) = t(n)+ i(n). For the spectral analysis we use the constant-Q
transform (CQT) [22] which allows to adjust the center frequen-
cies of frequency bins fκ and their frequency spacing ∆fκ, with
κ = {0, 1, . . . ,K − 1}, to the geometric frequency distribution
of notes fκ = f0 2

κ
12b in western music. Here, f0 denotes the

frequency of the lowest note to be considered and b determines the
number of frequencies describing a semitone. The CQT is defined
such that the quality factor Q = fκ/∆fκ = 1/(2

1
12b − 1) of

a frequency bin is constant. Hence, the analysis length becomes
frequency-dependent such that Nκ = fs/∆fκ = Qfs/fκ. The
CQT is then computed by

Xcqt(κ, λ) =
1

Nκ

∑
n∈Nκ

x(n, λ)wκ(n) exp

(
−j 2πQn

Nκ

)
, (1)

where x(n, λ) = x(n + λB) is a signal frame of length N0 =
Qfs/f0 with segment index λ and segment shift B and κ denotes
the CQT bin index. Furthermore, wκ(n) is an analysis window with
a frequency-dependent length. The windows are chosen as Hann
windows. Note that the analysis windows are aligned such that they
all attain their maximum value for n = N0/2, respectively. Outside
of their support the windows attain values of zero.

The CQT in (1) is not directly invertible since the reconstruction
of N0 signal samples from their K < N0 CQT coefficients con-
stitutes an under-determined problem. However, using the method

proposed in [23] we can restrict ourselves only to reconstruct a sub-
set of L samples centred around n = N0/2 which transforms the
under-determined problem into a segmented overdetermined prob-
lem if L < K. This problem can then be solved by means of a
least-squares procedure. The full-length signal can then be recon-
structed using the overlap-add method.

2.2. Reduced-rank Approximations Based on PCA

In order to reduce the spectral complexity of the signal x(n), block-
wise reduced-rank approximations of the CQT representation are
computed using PCA. To this end, the CQT-based time-frequency
representation of the full signal is denoted by a matrix X ∈ CN×K ,
where N is the total number of frames. This matrix is then seg-
mented intoM non-overlapping blocks U(m) ∈ CBm×K withm =
{0, 1, . . . ,M−1} andBm being the number of frames contained in
the m-th block. For notational convenience we will drop the index
m in the following whenever possible.

PCA projects the CQT matrix U on a signal-dependent orthog-
onal basis such that it represents a high amount of the total variance
in the matrix U by the first few dimensions of the transform space.
To this end, PCA solves the eigenvalue problem UHUwk = dkwk

where k ∈ {1, 2, ...,K} denotes the index of principal components
and [·]H is the Hermitian conjugate operator. It finds the eigenvalues
dk of the covariance matrix Cuu ∼ UHU, which correspond to the
variance represented in the k-th dimension of the principal compo-
nent space, and the corresponding eigenvectors wk. It is worth to
note, that the eigenvectors describe the most prominent and most co-
varying spectral bands. These eigenvectors span an orthogonal basis
W = [w1,w2, ...,wk, ...,wK ] and the eigenvalues are sorted in
descending order, i.e. d1 ≥ d2 ≥ . . . ≥ dK , which ensures that the
first principal components carry the highest percentage of total vari-
ance. Each block U can then be projected onto its basis W yielding
the score representation

T = UW (2)

where T = [t1, t2, ..., tk, ..., tK ] and tk ∈ CBm×1 denotes the k-
th coefficient vector. A dimensionality reduction can be performed
by retaining a selected number of eigenvectors wk with k ∈ K̂ =

{1, 2, ..., k̂} and k̂ ≤ K, which span a subspace Ŵ ⊂W resulting
in the reduced coefficient representation

T̂ = UŴ. (3)

Since W is a unitary matrix, a reduced-rank approximation of the
original spectrogram block can be obtained by

Û = T̂ŴH = UŴŴH. (4)

Depending on the number of retained components such a reduced-
rank approximation retrieves the most prominent and most tempo-
rally correlated harmonics of both the leading voice and the accom-
paniment and attenuates the low-variance spectral contributions. As
demonstrated in [12] this reduces the spectral complexity of music
signals which leads to a reduction of auditory distortion in the pres-
ence of cochlear hearing loss.

3. PROPOSED SEGMENTATION PROCEDURE

3.1. Explained variance ratio statistics

In applications the number of principal component to retain k̂ is
usually selected as the minimal number of the first principal com-
ponents, for which the explained variance ratio is big enough (i.e.
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not less than preset value). The explained variance ratio for the k̂
components is usually defined as

R(k̂,U) =

k̂∑
i=1

di

/ K∑
j=1

dj . (5)

The ratio (5) takes values in [0, 1] and represents the proportion be-
tween explained variance of the data along the first k̂ principal com-
ponents and total variance in the data. Assume the number of prin-
cipal component to retain is fixed and U contains observations from
some probability distribution. Then one might consider R(k̂,U) as
a measure of quality of data compression with k̂ first principal com-
ponents and use it for structural change point detection.

Suppose we are given a new sample data matrix Z ∈ RN×K .
In this case we will use the definition of explained variance ratio for
ratio between the variance explained by k̂ first eigenvectors of U

R(k̂,W, Z) =

k̂∑
i=1

wH
i Z

HZwi

K∑
j=1

wH
j Z

HZwj

. (6)

To our knowledge explained variance ratio was not previously used
for the change point detection in the spectral domain. It includes the
information about the structure preserved in principal components
and may be used for a segmentation procedure combined with di-
mension reduction by PCA.

Statistical properties of explained variance ratio could be derived
based on the distribution of the eigenvalues. For example, following
[24] the density of distribution of the eigenvalues d̄1 ≥ · · · ≥ d̄K of
sample covariance for the matrix Z with i.i.d. rows fromN (0,Σ) is

p(d̄1,··· ,d̄K)(l1, . . . , lK) =

K∏
i=1

l
(N−K−1)/2
i

∏
i<j

(li − lj)

CΣ,K,l1,...,lK

K∏
k=1

d
K/2
k

, (7)

where for the case Σ = ρIK :

CΣ,K,l1,...,lK =
2NK/2ΓK(K/2)ΓK(N/2)

K∏
i=1

exp(−li/2ρ)

. (8)

3.2. Segmentation via explained variance ratio

Suppose the assumption that k̂ principal components within the
blocks contain the main information about the signal is fulfilled.
Then if one breaks the block U into two sub-blocks U1 ∈ RB

1
m×K ,

U2 ∈ RB
2
m×K , B1

m +B2
m = Bm, it can be expected that

R(k̂,W1,U1)−R(k̂,W1,U2) < δ, (9)

where matrix W1 ∈ RK×K contains the principal component vec-
tors of U1, and δ is a constant. The sub-block U1 should be big
enough, namely B1 > rank(U1).

Denote by XI , I ⊂ {1, . . . , N} a sub-matrix of X , which con-
tain rows of X with indices in the set I . Inequality (9) defines a
segmentation Algorithm 1, where parameter δ controls the number

of resulting blocks. The procedure results in the set S of change
points. The number of change points depends on the value of δ: in-
crease of δ leads to smaller number of change points. There is no
rule to select δ at the moment. Intuitively, the choice of δ also deter-
mines the delay in change point detection and it shouldn’t be neither
very small, nor too big. Also it should take into account the num-
ber of principal components to keep: for the fixed δ if one increases
the number of principal components, then detection of change points
becomes less frequent. The distribution of the left-hand side statis-
tics (9) could be derived from the distribution of the data. For ex-
ample, for a sample from the standard normal distribution one can
use the common distribution of eigenvalues of covariance matrix (7),
(8) to derive the distribution of (5) and (6). Then, from the derived
distribution it could be possible to estimate δ, and to construct the
confidence intervals for the reliability of estimation. In the Section 5
below we will show results of simulations for different values of δ.
For a benchmark we use the segmentation with equidistant bound-
aries and a number of blocks equal to the number of change points
in the proposed segmentation method.

Algorithm 1 Structural changes via explained variance ratio

Require: k̂, δ;
return S
ibreak = 1, j = 1, S = ∅,
while ibreak +K/2− 1 < N do
I = {ibreak, . . . , ibreak +K/2− 1},
U1 := XI , U2 := U1,
Compute principal components W1 for U1,
Compute R(k̂,W1,U1),
R(k̂,W1,U2) = R(k̂,W1,U1),
while R(k̂,W1,U1) < R(k̂,W1,U2) + δ do
I := {ibreak +K/2− 1 + j},
U2 := XI ,
Compute R(k̂,W1,U2),
j = j + 1,

end while
ibreak := ibreak +K/2− 1 + j − 1, j := 1,
S = {S

⋃
ibreak},

end while

4. EVALUATION

For the evaluation we used extracts of 110 synthesized MIDI files
of chamber music pieces which were also used for evaluation in
[12]. The resulting leading melody and accompaniment signal wave-
forms are sampled at fs = 16 kHz, converted to mono signals,
and mixed at an input SIR of 0 dB. To compensate for the spec-
tral tilt towards higher frequencies, the music signals are fed to a
first order pre-emphasis filter yielding the filtered signal xf(n) =
x(n) − 0.9x(n − 1). The CQT (1) of each signal is computed for
f0 = 55 Hz, fK−1 = 7040 Hz, b = 2, B = 32, L = 64 which
denote the minimal analysis frequency, the maximal analysis fre-
quency, the number of CQT bins per note, the frame shift and the
synthesis window length, respectively. Hann windows are used as
analysis windows wκ(n) and as the synthesis window. Hence, in
total we obtain 168 CQT bins corresponding to seven octaves. Note
that this set of parameters provides a high-quality signal reconstruc-
tion from an unmodified CQT spectrum [23]. To reverse the effects
of the pre-emphasis filter the reconstructed signal is fed to the corre-
sponding first order de-emphasis filter.
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Then we applied explained variance ratio Algorithm 1 and seg-
mentation with equidistant boundaries to CQT-spectrum to obtain
sets of non-overlapping blocks U(m) ∈ CBm×K for PCA (see 2.2)
and computed the reduced rank approximations. Similarly as in [12]
we use the signal-to-inference ratio (SIR) and the signal-to-artefacts
ratio (SAR) [21] to assess the degree of accompaniment attenuation
and leading voice distortion.

5. RESULTS

5.1. Example of explained variance ratio segmentation

To illustrate explained variance ratio Algorithm 1 consider as an ex-
ample a piece from Bach Siciliano for Oboe and Piano with spectro-
gram in Figure 2. In Figures 3 result of change point detection by
Algorithm 1 is presented. One can see the correspondence between
the stationary and non-stationary regions in the spectrogram and the
segmentation result of the proposed algorithm.

Fig. 2. CQT-Spectrogram of Bach Siciliano for Oboe and Piano.

Fig. 3. Explained variance ratioR(k̂,W1, U2) (blue dotted line) and
the result of Algorithm 1 applied to CQT-transform of Bach Siciliano
for Oboe and Piano, δ = 0.2, number of principal components to
retain equals 10. Red vertical lines denote detected change points.

5.2. Comparison of segmentation methods

Using the experimental set-up defined in Section 4 we performed
numerical comparison of the Algorithm 1 with segmentation with

equidistant boundaries. We set the threshold to δ = 0.2 and
take the number of principal components to retain from the set
{5, 10, 15, 20, 25, 30}. For higher values the difference between the
input and reconstructed signals becomes inaudible [12]. For each
signal from database (see Section 4) we computed SIR and SAR
measures. The results for the mean of SIR and SAR in the database
for the explained variance Algorithm 1 (Alg.1) and the segmentation
with equidistant boundaries (Equid.) is shown in Figure 4. There’s
no improvement in terms of SIR, but in the SAR axes one can see
that explained variance ratio approach gives better results. For the
fixed δ and number of principal components to retain and for differ-
ent signals the number of resulting segments differ and depend on
the variability of the input signal. Sometimes for the fixed number of
principal components the selected value of δ is too high, so the delay
in change point detection doesn’t allow to trace structural changes.
Intuitively, one might expect that for each signal there exists certain
value of δ which balance between moderate number of blocks and
quality of change point detection for dimensionality reduction. Nev-
ertheless, for the experiments reported in Figure 4, we have chosen
to set δ to a fixed value of 0.2 which we found suitable on average.

Fig. 4. Results in case δ = 0.2 for explained variance ra-
tio method (Alg.1) and segmentation with equidistant boundaries
(Equid.). Numbers indicate the number of principal components
used in the methods. Dashed lines depict the correspondence be-
tween results of the methods: the number of blocks in equidistant
boundary segmentation was taken equal to the number of resulting
segments of Algorithm 1 for the fixed number of components.

6. CONCLUSIONS

In this paper we propose a method for change point detection in
spectral domain which allows for PCA low-rank approximation.
The method is based on explained variance ratio measure, which
was not previously used for change point detection in musical sig-
nals. The results indicate a reduction of artifacts of the leading
voice compared to the procedure based on equidistant boundaries
while the attenuation of the accompaniment remains unchanged.
We argue that the proposed segmentation procedure improves the
performance of a spectral complexity reduction scheme, which can
further improve the quality of the processed signal and thus make
these signals more accessible in the presence of a cochlear hearing
loss. The demonstrated improvements were achieved with a fixed
threshold δ, further improvements are possible when δ is chosen
adaptively. This will be studied in future works.
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