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ABSTRACT

Automatic drum transcription methods aim at extracting a
symbolic representation of notes played by a drum kit in au-
dio recordings. For automatic music analysis, this task is of
particular interest as such a transcript can be used to extract
high level information about the piece, e.g., tempo, downbeat
positions, meter, and genre cues. In this work, an approach to
transcribe drums from polyphonic audio signals based on a re-
current neural network is presented. Deep learning techniques
like dropout and data augmentation are applied to improve
the generalization capabilities of the system. The method is
evaluated using established reference datasets consisting of
solo drum tracks as well as drums mixed with accompani-
ment. The results are compared to state-of-the-art approaches
on the same datasets. The evaluation reveals that F-measure
values higher than state of the art can be achieved using the
proposed method.

Index Terms— Drum transcription, neural networks,
deep learning, automatic transcription, data augmentation

1. INTRODUCTION

The goal of automatic drum transcription (ADT) systems is
to create a symbolic representation of the drum instrument
onsets contained in monaural audio signals. A reliable ADT
system has many applications in different fields like music
production, music education, and music information retrieval.
Good transcription results can be achieved on simple solo
drum tracks [1], but for complex mixtures in polyphonic au-
dio, the problem is still not solved satisfactorily. In this work,
a robust method to transcribe solo drum tracks using RNNs
[2] is further extended to be applicable on polyphonic audio.

As in other work (e.g. [3, 1, 4, 5, 6]), the transcribed
instrument classes are limited to the three main instruments
used in most drum kits: bass drum, snare drum, and hi-hat.
This is a reasonable simplification as these three classes usu-
ally suffice to capture the main rhythm patterns of the drum
track [3] and cover most of the played notes in full drum kit
recordings.1

1>80% in the case of the ENST-Drums [7] dataset, see sec. 4.1.

2. RELATED WORK

The majority of ADT methods can be categorized into three
classes: i. segment and classify, ii. match and adapt, and iii.
separate and detect methods (cf. [9]).

Segment and classify methods first segment the audio
signal using, e.g., onset detection and then classify the result-
ing fragments regarding contained drum instruments [8, 9].
Miron et al. use a combination of frequency filters, onset
detection and feature extraction in combination with a k-
nearest-neighbor [10] and a k-means [8] classifier to detect
drum sounds in a solo drum audio signal in real-time.

Match and adapt methods use temporal or spectral tem-
plates of the individual drum sounds to detect the events.
These templates are iteratively adapted during classification
to better match the events in the input signal. Yoshii et al.
[11] present an ADT system based on template matching and
adaptation incorporating harmonic suppression.

The separate and detect methods utilize source separation
techniques to separate the drum sounds from the mix. Subse-
quently the onsets for the individual drums are detected. The
most successful technique in this context is non-negative ma-
trix factorization (NMF). Dittmar and Gärtner [1] use an NMF
approach for a real-time ADT system of solo drum tracks.
Their approach utilizes training instances for the individual
drum instrument of each track.

Additionally there are methods which combine tech-
niques from these categories. Hidden Markov Models (HMMs)
can be used to perform segmentation and classification in one
step. Paulus and Klapuri [3] use HMMs to model the develop-
ment of MFCCs over time and incorporate an unsupervised
acoustic model adaptation. Decoding the most likely se-
quence yields activation curves for bass drum, snare drum,
and hi-hat and can be applied for both solo drum tracks as well
as polyphonic music. Wu and Lerch [5] use an extension of
NMF, the so-called partially fixed NMF (PFNMF), for which
they also evaluate two different template adaptation methods.

Artificial neural networks represent a powerful machine
learning technique which is being successfully applied in
many different fields. Recurrent neural networks (RNNs)
are neural networks with additional connections (recurrent
connections) in each layer, providing the outputs of the same
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Fig. 1. Overview of the proposed method. The extracted
spectrogram is fed into the trained RNN which outputs activa-
tion functions for each instrument. A peak picking algorithms
selects appropriate peaks as instrument onset candidates.

layer from the last time step as additional inputs. These
recurrent connections serve as a kind of memory which is
beneficial for tasks with sequential input data. For example,
RNNs have been shown to perform well for speech recogni-
tion [12] and handwriting recognition [13].

RNNs have several advantages in the context of automatic
music transcription. As shown in the context of automatic
piano transcription by Böck and Schedl [14], RNNs are ca-
pable of handling many different classes better than NMF.
This becomes particularly relevant when classifying pitches
(typically up to 88) [14] or many instruments. Southall et
al. [15] apply bidirectional RNNs (BDRNNs) for ADT and
demonstrate the capability of RNNs to detect snare drums in
polyphonic audio better than state of the art. In [2], we show
that time-shift RNNs (tsRNNs) perform as well as BDRNNs
when used for ADT on solo drum tracks, while maintain-
ing online capability and also demonstrate the generalization
capabilities of RNNs in the context of ADT. In the present
work, this method is further developed into an online-capable
ADT system for polyphonic audio, which further improves
the state of the art.

3. METHOD

Fig. 1 shows an overview of the proposed method. First, the
input features derived from the power spectrogram of the au-
dio signal are calculated. The result is frame-wise fed into
an RNN with three output neurons. The outputs of the RNN
provide activation signals for the three drum instruments con-
sidered (bass drum, snare drum, and hi-hat). A peak picking
algorithm then identifies the onsets for each instrument’s acti-
vation function, which yields the finished transcript. The next
sections will cover the individual steps of the method in detail.

3.1. Feature Extraction

As input, mono audio files with 16 bit resolution at 44.1kHz
sampling rate are used. The audio is normalized and padded
with 0.25 seconds of silence at the start to avoid undesired ar-
tifacts resulting from onsets which occur immediately at the
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Fig. 2. Spectrogram of a drum track with accompaniment
(top) and target functions for bass drum, snare drum, and hi-
hat (middle). The target functions have a value of 1.0 for the
frames which correspond to the annotations of the individual
instruments and 0.0 otherwise. The frame rate of the target
function is 100Hz, the same as for the spectrogram. The third
plot (bottom) shows the output of a trained RNN for the spec-
trogram in the top plot.

beginning. A logarithmic power spectrogram is calculated us-
ing a 2048-samples window size and a resulting frame rate
of 100Hz. The frequency axis is transformed to a logarith-
mic scale using twelve triangular filters per octave over a fre-
quency range from 20 to 20,000 Hz. This results in a total
number of 84 frequency bins. Additionally the positive first-
order-differential over time of this spectrogram is calculated.
The resulting differential-spectrogram-frames are stacked on
top of the normal spectrogram frames, resulting in feature
vectors with a length of 168 (2x84) values.

3.2. Recurrent Neural Network

In this work, a two-layer RNN architecture with label time
shift is used (tsRNN). It has been shown that these networks
perform as well as BDRNNs on solo drum tracks, while hav-
ing the advantage of being online capable [2]. The RNN
features a 168 node input layer which is needed to handle the
input data vectors of the same size. Two recurrent layers, con-
sisting of 50 gated recurrent units (GRUs [16]) each, follow.
The connections between the input and the recurrent layers,
the recurrent connections, as well as the connections between
the recurrent layer and the next layer are all realized densely
(every node is connected to all other nodes). A so-called
dropout layer [17] is situated between the recurrent and the
output layer. In this layer, connections are randomly disabled
for every iteration during training. This helps preventing
overfitting to the training data. The amount of disabled con-
nections is controlled by the dropout rate, which was set to
rd = 0.3. The output layer consists of three nodes with sig-
moid transfer functions, which output the activation functions
for the three instrument classes defined earlier.

Label time shift refers to the process of shifting the orig-
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inal annotations. After transcription, the detected onsets are
shifted back by the same time. In doing so, the RNN can also
take a small portion of the sustain phase of the onset’s spec-
trogram into account. The used delay of 30ms (corresponds
to three spectrogram frames) in this work is still sufficiently
small for certain applications like score following and other
visualizations, while it can be tuned to meet the demands of
other applications.

3.3. Peak Picking

The neurons of the output layer generate activation functions
for the individual instruments (see fig. 2). The instrument
onsets are identified using the same peak picking method as
in [2]: A point n in the function F (n) is considered a peak if
these terms are fulfilled:

1. F (n) = max(F (n−m), · · · , F (n)),

2. F (n) ≥ mean(F (n− a), · · · , F (n)) + δ,

3. n− nlp > w,

where δ is a variable threshold. A peak must be the maxi-
mum value within a window of size m+1, and exceeding the
mean value plus a threshold within a window of size a + 1.
Additionally, a peak must have at least a distance of w + 1 to
the last detected peak (nlp). Values for the parameters were
tuned on a development dataset to be: m = a = w = 2.

3.4. RNN Training

When fed with the features at the input nodes, the RNN
should reproduce the activation functions of the individ-
ual instruments at the output neurons. During training, the
update function adapts parameters of the network (weights
and biases of neurons) using the calculated error (loss) and
the gradient through the network. As update function, the
rmsprop method is used [18].

As loss function, the mean of the binary cross-entropy be-
tween outputs of the network and target functions is used (see
fig. 2). Snare drum and hi-hat onsets are considered more
difficult to transcribe than bass drum [3, 5, 15]. Due to this
fact, the loss functions of the output neurons for bass drum
(1.0), snare drum (4.0), and hi-hat (1.5) are weighted differ-
ently. This way, errors for snare drum and hi-hat are penalized
more, which forces the training to focus on them.

RNN training using rmsprop involves so-called mini-
batches. In this work, a mini-batch consists of eight training
instances. The training instances are obtained by cutting
the extracted spectrograms into 100-frame-segments with
90 frames overlap. The order of the segments for training
is randomized. To further increase generalization, data-
augmentation [19] is used. The training instances are ran-
domly augmented using pitch shift (−5 to +10 frequency
bins) and time stretching (scale factors: 0.70, 0.85, 1.00,
1.30, 1.60).

Training is structured into epochs, during which the train-
ing data is used to optimize the parameters of the network.

At the end of an epoch a validation set (25% excluded from
the training set) is used to estimate the performance of the
trained network on data not used for training. The training of
the RNN is aborted as soon as the resulting loss on the valida-
tion set has not decreased for 10 epochs. The initial learning
rate was set to rl = 0.007, the learning rate is reduced to a
fifth every 7 epochs.

All hyperparameters like network architecture, dropout
rate, augmentation parameters, and learning rate were chosen
accordingly to experiments on a development dataset, experi-
ence, and best practice examples.

4. EVALUATION

The well-known metrics precision, recall, and F-measure
are used to evaluate the performance of the presented sys-
tem. True positive, false positive, and false negative onsets
are identified by using a 20ms tolerance window. It should
be noted that state-of-the-art methods for the ENST-Drums
dataset [3] as well as for the IDMT-SMT-Drums dataset [1],
use less strict tolerance windows of 30ms and 50ms, re-
spectively, for evaluation. However, listening experiments
showed that distinct events with a delay of 50ms are already
perceivable. Therefore, in this work, 20ms windows are
used.

4.1. Datasets

For evaluation, two well-known datasets are used. The IDMT-
SMT-Drums [1] contains recorded (RealDrum), synthesized
(TechnoDrum), and sampled (WaveDrum) drum tracks. It
comprises 560 files of which 95 are simple drum tracks (of
approx. 15sec). The rest are single-instrument training tracks.

As second dataset the ENST-Drums set [7] is used. The
dataset consists of real drum recordings of three drummers
performing on three different drum kits. The recordings are
available as solo instrument tracks and as two mixtures (dry
and wet). For a subset, accompaniment tracks are included
(minus-one tracks). The total length of the recorded mate-
rial is roughly 75 minutes per drummer. In this work, the
wet mixes of the minus-one tracks plus accompaniment of all
three drummers were used. Since the ENST-Drums dataset
contains more than the three main instruments, only the snare,
bass, and hi-hat annotations were used. 81.2% of onsets are
annotated as snare drum, bass drum, and hi-hat while the re-
maining 18.8% cover other cymbals and tom-tom drums.

4.2. Experiments

The proposed method was evaluated in four different exper-
iments. These were performed using i. the drum tracks of
the IDMT-SMT-drums dataset (SMT solo), ii. the minus-one
tracks of the ENST-drums dataset without accompaniment
(ENST solo), and iii. the minus-one tracks mixed with ac-
companiment of aforementioned (ENST acc.). In the ex-
periments, on SMT solo a three-fold cross validation on the
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F-measure [%] for individual methods on datasets
Method SMT solo ENST solo ENST acc.
NMF [1] — (95.0) — —
PFNMF[5] 81.6 (—) 77.9 72.2
HMM [3] — (—) 81.5 74.7
BDRNN [15] 83.3 (96.1) 73.2 66.9
tsRNN 92.5 (96.6) 83.3 75.0

Table 1. Top four rows show results of state-of-the-art algo-
rithms. Highest values were achieved at peak picking thresh-
olds of 0.10 and 0.15 (ENST solo, SMT solo opt. cf. fig. 3).
Values in brackets represent results for optimized models
(SMT solo opt. see sec. 4.2).

three splits (RealDrum, TechnoDrum, and WaveDrum) of the
dataset was performed (comparable to the automatic experi-
ment in [15] and [5]). Additionally a six-fold cross validation
on six randomized splits was performed (SMT solo opt.). This
task is comparable to the semi-automatic experiments in [15],
and [1]—it is arguably a even harder task, since in a model
is trained on more than the training data of just one track. In
both cases the corresponding splits of the training tracks are
additionally used only for training.

In the case of ENST solo and ENST acc. the dataset was
split into three parts consisting of the tracks of one drummer
and a three-fold cross validation was performed. Training for
each fold was performed on all tracks of two drummers while
testing was done on the minus-one tracks (without and with
accompaniment resp.) of the third drummer and thus on un-
seen data. This is consistent with the experiments performed
in [3, 5, 15].

5. RESULTS

Tab. 1 summarizes the results of the presented method and
state-of-the-art methods on the used datasets. It can be seen
that the F-measure values for the tsRNN approach are higher
than the state of the art for SMT solo and ENST solo, and on
the same level for ENST acc.Since for training, both tracks
with and without accompaniment were used, the same mod-
els are applied to ENST solo and ENST acc. splits, which
further demonstrates the capability of the presented method
to generalize well. Fig. 3 shows F-measure and precision-
recall curves for the cross-validation results on the individual
datasets. For these curves the threshold level for peak picking
was varied in the range 0.05 to 0.95 using steps of 0.05. It
can be seen that the highest F-measure values are found for
threshold values of 0.10 and 0.015, which is lower than the
expected value of around 0.5 (target functions range is 0–1).
This is due to the fact that the output of the RNN does not
contain much noise (see fig. 2), which implies that the trained
RNN is capable of effectively filtering accompaniment.

Since the target functions contain little noise while strong
peaks are present for instrument onsets, only little time was
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Fig. 3. Results of the evaluation on the individual datasets.
Left plot shows F-measure curve, right plot precision-recall
curves for different threshold levels (δ) for peak picking. Best
results were achieved at thresholds of 0.10 and 0.15.

invested optimizing peak picking. Noticeable improvements
to [2] were achieved by using data augmentation and GRUs
instead of RNN units for the network.

6. CONCLUSION

In this work, an approach for drum transcription from solo
drum tracks and polyphonic music was introduced. The
proposed method uses an RNN with two recurrent layers
consisting of GRUs in combination with label time shift and
introduces loss function weighting for the individual instru-
ments to increase transcription performance. Additionally
dropout and data augmentation are successfully applied to
overcome overfitting to the individual drum sounds in the dif-
ferent dataset splits. The presented system is online capable
with a latency of 30ms introduced by the label time shift.

In contrast to hand-crafted systems and features, where
the architecture is often difficult to adapt when shortcomings
are detected, RNNs have shown to be more flexible. A ma-
jor advantage of such a technique is that the system can be
focused on training instances on which the model previously
failed. In table 1 it can be seen that RNNs are capable of
learning to filter accompaniment and perform well also on
polyphonic music. It has been shown that the transcription F-
measure performance of the proposed method is higher than
the results of state-of-the-art approaches, even when using a
more stringent tolerance window for evaluation.
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