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ABSTRACT

We present a novel time-domain pitch contour tracking algo-
rithm based on Harmonic Locked Loops, which differs from
existing method in terms of its approach, resolution, timbre
information and speed. In addition to estimating pitch con-
tours, the proposed method computes the amplitude of each
harmonic over time, expanding the potential set of features
that can be used for higher level tasks such as melody ex-
traction. The method is tested against ground truth melody
pitch annotations from publicly available datasets, and we
show that contour recall is improved compared with a state
of the art approach.

Index Terms— pitch, melody, contour, music

1. INTRODUCTION

A pitch contour is a continuous trajectory of fundamental fre-
quency values over time, whose length may vary from a sin-
gle note in the shortest case to a short phrase in the longest.
A number of MIR algorithms use pitch contours as a mid-
level representation for other tasks, including melody extrac-
tion [1, 2, 3, 4, 5, 6] and multiple-f0 estimation [7, 8, 9]. In
melody extraction, for example, several popular methods first
estimate a set of candidate contours and classify which be-
long to the melody. Thus, the objective of contour tracking is
to estimate a set of contours from polyphonic music such that
the contours belonging to the target concept (e.g. melody)
are included. The most important goal of a contour tracking
algorithm is to have high target contour recall, as incorrect
contour estimates can be easily detected.

Existing contour tracking methods have been pro-
posed based on sinusoidal modeling [10], phase vocod-
ing [4], source-filter modeling [2] and time-frequency peak-
streaming [11, 1]. These methods rely on a variety of input
representations including multi-resolution transforms [4, 5],
but have been found to be comparable to standard trans-
forms for contour extraction [12], and are subject to the
usual time-frequency resolution trade-off. Timbre informa-
tion, which can be used as additional information to help de-
termine whether a contour belongs to the melody, is implicitly
encoded in some methods [2, 10], but most do not supply this
information.

While many contour tracking methods have achieved

good performance on certain datasets, these results do not
generalize to expanded datasets, such as MedleyDB [13].
In [3], we performed an evaluation of the contour tracking al-
gorithm proposed in [12] on MedleyDB. We found that only
66% (±22%) of ground truth melody contour frames were
present in the set of contour candidates, imposing an upper
bound on melody extraction performance. Recently the au-
thors of [6] showed that replacing the contours used in several
existing algorithms improved melody extraction performance
on both MedleyDB and Orchset [14], highlighting the need
for renewed exploration of contour tracking approaches.

In [15], a time-domain algorithm is proposed called a
Harmonic Locked Loop (HLL), which is designed to separate
continuous non-stationary harmonic signals in the presence
of heavy interference, e.g. removing a singing voice from a
symphony. An HLL-based contour tracking method has not
yet been explored, and the HLL’s robustness , computational
efficiency, and timbre information makes it an interesting al-
gorithm to employ for this task. Being a time-domain ap-
proach, the estimated contour frequencies are not subject to
a particular grid, and the time resolution of the contours is at
the audio sample-rate. Note that similar time-domain meth-
ods have been used for pitch tracking [16, 17], but are for
monophonic, not polyphonic audio. Furthermore, an HLL
estimates the amplitude of each harmonic over time, provid-
ing rich timbre information. The original HLL algorithm was
originally designed for source separation, performing contour
tracking as an intermediate step; the focus was on the qual-
ity of the source separation, and the algorithm was developed
using very short test signals that required an accurate initial
time-frequency seed and had no stopping criterion. The pa-
rameters of the original HLL were manually tuned to the test
signals, and were not tested on or optimized for a larger cor-
pus.

In this paper, we explore an HLL-based contour tracking
method, which has very different intrinsic properties from ex-
isting contour tracking methods, and the potential to advance
the state of the art. We modify the HLL algorithm to impose
a stopping criterion, adapt several intermediate steps to bet-
ter suit our task, include an automatic seed detection method
to use as initial conditions to the tracker, and perform an ex-
tensive sweep over the algorithm’s parameters on a corpus of
varied musical data. Finally, we verify the effectiveness of the
method by comparing it with a state of the art approach and
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provide a run-time analysis.

2. BACKGROUND

2.1. Frequency Locked Loops

An HLL is an extension of a Frequency Locked Loop
(FLL) [18]. Let y[n] be a sinusoidal audio signal modeled
as

y[n] = a[n] exp

(
j2π

fs

n∑
k=0

f [k] + φ0

)
+ w[n] (1)

where f [n] and a[n] are the instantaneous frequency and am-
plitude at time n, φ0 is the initial phase, fs is the sample rate,
and w[n] is an interfering signal. An FLL computes an esti-
mate f̂ [n] of an instantaneous frequency f [n] through an it-
erative procedure. A single iteration of the frequency locked
loop first consists of updating instantaneous frequency and
phase estimates given the error ε from the previous sample
and the tracking gain G:

f̂ [n] = f̂ [n− 1] +G · ε[n− 1] (2)

φ̂[n] = φ̂[n− 1] +
2π

fs
f̂ [n] (3)

The audio signal is demodulated to baseband by a complex
sinusoid at the estimated frequency, shifting the spectrum of
the signal by −f̂ [n]:

d[n] = y[n] · exp (−j · φ̂[n]) (4)

The demodulated signal d is low-pass filtered, resulting in a
complex sinusoid u whose frequency is approximately equal
to the error of the estimate f [n]− f̂ [n]:

u[n] =
1

α0

(∑
i

βid[n− i]−
∑
j

αju[n− j]

)
(5)

where βi and αj are the lowpass filter coefficients1. If the
estimate f̂ [n] is close to f [n], u will have instantaneous fre-
quency that is close to zero. The frequency tracking error ε is
computed as the change in phase of u, closing the loop:

ε[n] =
fs
2π
· 6 (u[n] · u[n− 1]∗) (6)

We may estimate the amplitude â of the tracked sinusoid as:

â[n] = |u[n]| (7)

2.2. Extending FLLs to HLLs

An FLL is able to accurately track frequencies for signals
in which there is little interference in the frequency region
within the cutoff frequency fc of f . However in polyphonic
music, there are often signals present in this frequency region

1We found that the HLL is quite sensitive to the type of filter, and it is
imperative that the filter has a fast roll-off.

caused by transients, harmonics from other pitched sounds,
etc. An HLL addresses this by extending the FLL algorithm
to incorporate information drawn from the first H harmon-
ics as well; it runs a series of FLL trackers in parallel for
each harmonic, and jointly computes the tracking update ε†

as a weighted average of the tracking error produced by each
harmonic’s tracker where v̂[n, h] is the local variance of the
tracker for harmonic h:

ε†[n] =
H−1∑
h=0

(v̂[n, h])−1ε[n, h]

/
H−1∑
h=0

(v̂[n, h])−1 (8)

v̂[n, h] = gv · v̂[n− 1, h] + (1− gv)(ε[n, h])2 (9)

for a fixed variance gain gv . Since the weight for a tracker is
inversely proportional to its local variance in tracking error,
a tracker that is interrupted by noise is weighted less heavily
in the final update than stable trackers. The tracking error for
harmonic h is a scaled version of Eq. 6:

ε[n, h] =
fs

2π(h+ 1)
6 (u[n, h]u[n− 1, h]∗) (10)

where u[n, h] is computed as in Eq. 5, but using the value of
d for harmonic h. The frequency update from Eq. 2 becomes:

f̂ [n] = f̂ [n− 1] +G · ε†[n− 1] (11)

3. METHOD

In this section, we present a high-level overview of the con-
tour tracking method, the modifications made to the HLL al-
gorithm, and the automatic seed detection method. We then
perform a sweep over the modified HLL parameters and pro-
vide a run-time analysis. The metrics are computed using
mir eval [19], and our code is made available online 2.

3.1. Contour Tracking

Algorithm 1 Track Contours
procedure TRACKCONTOURS(y, fs)

N ← len(y)
yr ← Reverse(y)
seeds← GetSeeds(y, fs)
for n0, finit in seeds

c+ ← HLL(y, fs, n0, finit)
c− ← HLL(yr, fs, N − n0, finit)
contour← Join(Reverse(c−), c+)
yield contour

The proposed contour tracking method consists of first
estimating a series of time-frequency seeds, and performing
tracking on each seed as shown in Algorithm 1. Seeds can be
located anywhere in the contour, so we run a modified HLL
both forward and backward in time to track the entire contour.
The backward tracking is performed by simply running the

2https://github.com/rabitt/icassp-2017-hll
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HLL on the reversed audio signal. The output of the algorithm
is a list of contours, where each contour is a sequence of time-
frequency-amplitude tuples (t, f, a0, a1, . . . aH−1), where ai
denotes the amplitude of harmonic i, giving us detailed tim-
bre information. An HLL gives frequency estimates at the
sample level, but tasks using contours rarely need this level of
granularity, so the method decimates the output contours to a
lower sample rate of 44100

256
≈ 172 Hz.

3.2. HLL Modifications

We first introduce a stopping condition that is triggered if ei-
ther the tracking error ε† rises above a given threshold εmax
or the average amplitude ã falls below a minimum threshold
amin, both of which indicate that the tracking has become un-
stable. We compute the average amplitude similarly to ε†:

ã[n] =

H−1∑
h=0

(v̂[n, h])−1â[n, h]

/
H−1∑
h=0

(v̂[n, h])−1 (12)

When the tracker is first seeded these stopping conditions may
be triggered while the tracker is stabilizing, so we additionally
enforce a minimum contour length nmin.

Little attention is given to the tracking gain G in the orig-
inal work, and the experiments leave it constant. However,
since the tracking gain controls the amount the frequency can
change between samples, we use G = g · f [n−1]440.0 (where g is
a constant) such that the tracking gain scales with frequency,
centered around a fixed frequency we choose to be 440 Hz.
Finally, we use a 4th order Butterworth filter with a cutoff of
fc = 30 Hz in Eq. 5 because of its steep roll-off and mini-
mal computational cost. The complete modified algorithm is
outlined in Algorithm 2.

3.3. Seed Detection

We define a “seed” as a time/frequency coordinate that is
given as an initial condition to the HLL. An ideal seed lies
within fc=30 Hz of the true frequency at any point in time
where the contour is active. We design a liberal seed selec-
tion algorithm, intended to overestimate the number of seeds
to maximize recall. Of course, a solution to maximize recall is
to exhaustively select every time-frequency pair along some
grid, but as we will discuss in Section 3.5, the computation
time of the algorithm is linear in the number of seeds, thus we
prune the selection to the most relevant candidates. The audio
is first passed through a simple Harmonic-Percussive source
separation algorithm [20] to reduce transients. A constant-Q
representation of the resulting harmonic audio signal is com-
puted and the amplitudes are normalized to be between 0 and
1. The amplitudes for each frequency band are passed through
an averaging filter, and the seeds are chosen from the peaks
across time of the resulting signals.

Algorithm 2 Modified Harmonic Locked Loop
procedure HLL(y, fs, n0, finit, H, g, nmin, εmax, amin)

β, α← Butterworth(fc = 30 Hz,order = 4)
n = n0 . starting index
C = 1 . counter
f̂ [n] = finit . frequency estimate
φ̂[n] = 0.0 . phase estimate
ε†[n] = 0.0 . tracking update
ã = 1.0 . current average amplitude
for h = 0 to H − 1

ε[n, h] = 0.0 . tracking error
v̂[n, h] = 1.0 . tracking variance
â[n, h] = 0.0 . amplitude estimate
d[n, h] = y[n0], u[n, h] = 0.0

while C < nmin or (ã ≥ amin and ε†[n] ≤ εmax)
C = C + 1, n = n+ 1
f̂ [n]← Eq (11), φ̂[n]← Eq (3)
for h = 0 to H − 1

if h is 0 then
d[n, h]← Eq (4)

else
d[n, h]← d[n, h− 1] · exp (−j · φ̂[n])

u[n, h]← Eq (5), ε[n, h]← Eq (10)
v̂[n, h]← Eq (9), â[n, h]← Eq (7)

ã← Eq (12), ε†[n]← Eq (8)
return f̂ , â
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Fig. 1. Maximum achieved Fβ score for each HLL tracking
parameter across all other combinations of parameter settings.
The best configuration found was H = 5, amin = 0.001,
εmax = 100, nmin = 0.05 s, and g = 0.001.

3.4. Parameter Settings

While [15] provides an extensive theoretical background on
the HLL method and some qualitative examples, relatively lit-
tle objective testing on real data was performed. We perform a
2000 iteration randomized sweep of the modified HLL param-
etersH , amin, εmax, nmin, and g jointly on 7 randomly selected
tracks from the MedleyDB dataset [13] using ground truth
seeds as input to the HLL. The seeds were computed from
the dataset’s annotated pitch contours 3, and were chosen as

3using the Melody type-3 annotations, see [13] for details
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the time frequency point at the center of each contour. Pitch
annotations that jumped more than 25 cents in frequency be-
tween frames were split into multiple contours. We evaluate
the quality of the output contours by computing the precision
(percentage of predicted frames that were within a semitone
of the ground truth) and recall (percentage of ground truth
frames that had an estimate within a semitone of the ground
truth) as described in [21]. The optimal parameters were cho-
sen as those with the highest average Fβ score. For our pur-
poses, recall is more important than precision, as the output
of a contour extraction algorithm can be cleaned up by a se-
lection method [3, 6], and we use β = 5. The results for the
highest achieved average Fβ for each parameter value are re-
ported in Figure 1, and the optimal parameter is marked with
a diamond. We see that performance improves with the num-
ber of harmonics, as we would hope, and drops off slightly
at H = 6. The minimum contour length is unsurprisingly
optimal at the longest allowed value, and we do not allow it
to be longer than a quarter second to prevent artificially long
contours.

3.5. Algorithmic Complexity and Runtime

The HLL method is an O(H · C) algorithm, where H is the
number of harmonics and C is the number of samples in an
estimated contour. C is variable depending on the type of
data, but is roughly 1 second per contour across the parameter
tuning set. We use H = 5 in our experiments, but runtime
can be reduced greatly by loweringH for only a slight drop in
accuracy, shown in Figure 1, top left. The TrackContours
method is O(H · C ·M), where M is the number of seeds,
and the average track in MedleyDB has ≈ 230 ground truth
melody 3 seeds.

We test the HLL’s runtime using a random subset of esti-
mated seeds. The average runtimes per seed were 23.8± 9.0,
19.5 ± 10.8, and 19.0 ± 10.4 milliseconds for 10, 100, and
1000 seeds, respectively4. An interesting trait of the runtime
of TrackContours is that it is not directly a function of
the length of a recording, but rather the number of seeds. The
number of seeds is correlated to but not dependent on the
length of the audio - a 30 second symphony recording will
likely have more seeds than a 2 minute solo voice recording.

4. EXPERIMENTS

In the following experiments, we run TrackContours on
the remaining 61 tracks in MedleyDB with melody annota-
tions, and evaluate the output using the recall and precision
metrics defined in [21]. Additionally we run another contour
tracking algorithm (which we will refer to as SAL) described
in [12]. There is a direct relationship between contour recall
(against ground truth melody contours) and the upper bound

4Runtimes were measured on a 2014 MacBook Pro with a 2.6 GHz Intel
Core i5 processor, 8GB DDR3 RAM, and a 250GB SSD.

on overall accuracy for a melody extraction system. (For de-
tails on the referenced melody extraction metrics see [1]).
Given a set of contours with contour recall r, a system that
correctly estimates voicing and selects the best possible con-
tours out of the set of estimates will achieve an overall accu-
racy of r, and a raw pitch accuracy of r. Similarly, if the above
set of contours had chroma recall rc, an ideal system would
achieve a raw chroma accuracy of rc. There is no direct re-
lationship between contour precision and melody extraction
metrics - better precision simply means that the contour clas-
sifier has fewer estimates to select from.

For an upper bound on the HLL’s performance, we first
compute contours using ground truth seeds. The resulting
contours had a recall of 0.69 (±0.11) and a precision of
0.33 (±0.11), compared with SAL which had a recall of
0.59 (±0.19) and precision of 0.31 (±0.15). We repeated
the above experiment using estimated seeds as described in
Section 3.3, which achieved an accuracy of 0.63 (±0.19) and
precision of 0.04 (±0.04). We see that this still outperforms
SAL, but is a bit below the upper bound due to missed seeds.
The overestimated number of seeds also leads to quite low
precision in this setting, but as discussed in Sec. 1, low pre-
cision is not a big issue because the majority of the incorrect
contours estimated by an HLL can be easily identified by a
simple classifier [3].

We additionally examine the recall when all frequencies
are wrapped to a single octave (referred to as chroma), for-
giving octave mistakes. The upper bound for HLL’s chroma
recall was 0.70 (±0.12) (versus 0.69 recall), indicating only
1% of the mistakes were octave errors. With estimated seeds,
chroma recall was 0.81 (±0.14), thus nearly a fifth of the mis-
takes made by the tracker were octave mistakes, likely due
to seeds that were estimated at octaves above/below the true
contour. SAL falls in between, with a chroma recall of 0.67
(±0.16).

Overall, we find that there is still a glass ceiling on the
performance of algorithms using HLL contours as input be-
cause the algorithm does not achieve perfect recall. However,
the aforementioned glass ceiling is higher than before, as the
HLL performs better than SAL in terms of contour recall.

5. CONCLUSIONS AND FUTURE WORK

We presented a novel time domain contour tracking algorithm
based on a modified harmonic locked loop, showed that it out-
performs a state of the art method in terms of melody contour
recall, and provided a runtime analysis.

The increase in melody recall addresses the bottleneck
in current melody extraction algorithms, and could be used
to advance the state of the art. Finally, we plan to utilize
these contours as inputs for melody extraction, and explore
the use of the time varying harmonic amplitudes as features
for melody extraction and instrument identification, or clus-
tering/streaming tasks.
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