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ABSTRACT
In this paper, a method for multi-pitch estimation of stereo-
phonic mixtures of multiple harmonic signals is presented.
The method is based on a signal model which takes the am-
plitude and delay panning parameters of the sources in a
stereophonic mixture into account. Furthermore, the method
is based on the extended invariance principle (EXIP), and a
codebook of realistic amplitude vectors. For each fundamen-
tal frequency candidate in each of the sources, the amplitude
estimates are mapped to entries in the codebook, and the
pitch and model order are estimated jointly. The performance
of the proposed method is evaluated using mixtures of real
signals. Experiments show an increase in performance when
knowledge about the panning parameters is utilized together
with the codebook of magnitude amplitudes when compared
to a state-of-the-art transcription method.

Index Terms— Multi-pitch estimation, music informa-
tion retrieval, model-order selection, vector quantization.

1. INTRODUCTION

Often, music signals contain multiple pitches, or fundamen-
tal frequencies, e.g., when multiple instruments are played
simultaneously. Knowing these fundamental frequencies is
useful in many applications where the harmonic signal model
is used in, such as, enhancement [1], source localization [2],
automatic music transcription [3] and source separation [4].

Several multi-pitch estimation methods exist, e.g., non-
parametric methods, such as those based on the autocor-
relation function (ACF) estimation, like [5], and statistical
parametric, model-based approaches, such as the maximum
likelihood (ML) method [6], which can be used iteratively
to resolve multiple fundamental frequencies, using, e.g., the
harmonic matching pursuit (HMP) [7], and the expectation-
maximization (EM) algorithm [6]. Within the area of auto-
matic music transcription, the main goal is to form score-like
representations [3], resulting in discrete pitch estimates, even
though the pitch is a continuous parameter. Such methods
are often based on spectrogram factorization methods, where
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an input time-frequency representation is decomposed into
note templates and activations. Examples are methods based
on non-negative matrix factorization (NMF) [8] and proba-
bilistic latent component analysis (PLCA) [9, 10]. Estimating
multiple concurrent pitches is a difficult problem, especially
when the fundamental frequencies of the sources have over-
lapping harmonics, or when they are related in a simple way.
A method for multi-pitch estimation of recordings of piano
signals, where overtones might overlap, is presented in [11].
The method is based on a smooth autoregressive model of the
spectral envelope of the overtones of each note. The spectral
smoothness principle is presented in [12].

In this paper, we present a method for multi-pitch esti-
mation for stereophonic mixtures of sources consisting of,
possibly multiple, harmonic signals, that might have over-
lapping harmonics. As opposed to the single-channel meth-
ods described in the above, mixtures are here assumed to
contain several harmonic signals with amplitude and delay
panning applied. The method is based on a multi-channel
signal model, where the panning parameters are taken into
account. The fundamental frequencies are estimated jointly
with the model order, iteratively for each source. The least
squares (LS) amplitude estimates are then mapped to entries
in a codebook trained using amplitude vectors of monophonic
signals, and the fundamental frequency and model order of
each source are re-estimated using the mapped amplitudes. In
this way, the fundamental frequencies of harmonic sources,
with overlapping harmonics, can be resolved. In relation to
the work presented in [13], where a codebook-based approach
for multi-pitch estimation was proposed, the work presented
in this paper is based on a stereophonic signal model, intro-
duced in [14], in which a pitch estimator, which takes the
amplitude and delay panning parameters into account when
estimating the fundamental frequencies of stereophonic mix-
tures of single-pitch signals, was proposed. Furthermore, in
the work presented here, the model order of each harmonic
source is estimated jointly with its fundamental frequency. It
should be noted that we are here estimating continuous pitch
of the signals considered, resulting in a full parameterization
of the signals in the mixture. Furthermore, it should be noted
that we here consider the panning parameters known, and we
consider estimating the parameters a separate problem.
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2. SIGNAL MODEL

Consider a complex-valuedK-channel mixture at time n. The
data in the kth channel is represented by a snapshot xk ∈ CN ,
i.e.,

xk = [xk(0) xk(1) · · · xk(N − 1)]T ,

for k = 0, . . . ,K − 1. It should be noted here that a complex
signal model is used because it may lead to simpler expres-
sions, and lower computational complexity. It should also be
noted that although the signal model is complex, it can be
used with real signals by applying the Hilbert transform. We
assume that each snapshot is generated by M sources spa-
tially rendered by applying amplitude and delay panning. An
example of an amplitude panning law, which could be applied
for a stereophonic mix, i.e., K = 2, is [15]

gk,m =

{
cos θm, for k = 0.

sin θm, for k = 1.
(1)

where k ∈ {0, 1} is the channel number for a stereophonic
mixture, and θm is the angle between the pan direction and the
left loud speaker (k = 0) for the mth source. The aperture of
the loud speakers is assumed to be 90◦ [15], resulting in equal
amplitudes for θm = 45◦, while only one of the channels will
be active when θm = 0◦ or θm = 90◦. Delays can also be
used to enhance the spatial perception [16, 17], where a delay
τk,m is added to one of the channels of a source. However,
this type of panning is less common than amplitude panning.
Furthermore, it should be noted that sources might share pan-
ning parameters, e.g., when chords are played. The data in
channel k is modeled as a linear superposition of M sources,
i.e.,

xk(n) =

M∑
m=1

gk,msm(n− τk,m) + ek(n),

with

sm(n) =

Lm∑
l=1

αm,le
jω0,mln,

where ω0,m is the fundamental frequency of the mth source,
Lm is the model order, and αm,l = Am,le

jφm,l is the complex
amplitude, where Am,l is the real amplitude of the lth har-
monic of the mth source, φm,l its phase. The noise ek(n) is
assumed to be white and complex Gaussian, and the signal is
assumed to be stationary during the interval n = 0, . . . , N−1.
A vector signal model can then be stated as

xk =

M∑
m=1

ZmG(k,m)αm + ek, (2)

where Zm is a Vandermonde matrix, defined as Zm =
[zm,1 · · · zm,Lm

], zm,l = [1 ejω0,ml · · · ejω0,ml(N−1)]T ,

and

G(k,m) =

gk,me
−jω0,mfsτk,m · · · 0

...
. . .

...
0 · · · gk,me−jLmω0,mfsτk,m

 ,
which is defined by the panning parameters (1) and τk,m. Fur-
thermore, the vector of complex amplitudes is given byαm =
[αm,1 · · · αm,Lm

]T , and ek = [ek(0) ek(1) · · · ek(N −
1)]T . The likelihood of the observed signal, parametrized by
ψ = [ω0,1 gk,1 τk,1 α

T
1 · · · ω0,M gk,M τk,M αTM ]T , is

defined as p(x;ψ), where x is obtained by stacking xk, for
all channels. Here, we are interested in estimating the set of
fundamental frequencies ω0 = [ω0,1 · · · ω0,M ]T , while the
other parameters are considered nuisance parameters.

3. PROPOSED METHOD

We now derive the joint multi-channel multi-pitch and model
order estimator. We wish to find the parameters of the multi-
pitch mixture, i.e., ψ̂ = arg maxψ ln p(x;ψ). For white
Gaussian noise, and mutually independent parameters, this
resembles the NLS method, i.e.,

ω̂0 = arg min
{ω0,m}∈Ω

∥∥∥∥∥x−
M∑
m=1

ZmG(k,m)αm

∥∥∥∥∥
2

2

, (3)

where Ω is the set of possible frequencies. However, solv-
ing (3) for all ω0,m at once is a multidimensional problem.
One possible approach for estimating the parameters is to use
an iterative method, such as the harmonic matching pursuit
[7, 6], which the proposed method is based on. The HMP is
based on a residual at iteration i at time n, defined as

r
(i)
k (n) = r

(i−1)
k (n)−

Li∑
l=1

gk,mαm,le
jω0,ml(n−τk,m), (4)

and is used to estimate the model parameters iteratively for
each modeled harmonic source m. The method is initial-
ized using the observed signal, i.e., r(0)

k (n) = xk(n). As
previously mentioned, the fundamental frequencies of the M
sources are estimated jointly with the model order. The MAP
model selection criterion [18, 6] is used as a model selection
rule, i.e.,

M̂m = arg min
Mm

K−1∑
k=0

−ln p
(
xk; ψ̂m,Mm

)
+

1

2
ln |Ĥm|,

where M̂m is the model of themth source, and |·| denotes the
determinant of a matrix. The determinant of the Hessian, Ĥm,
can be approximated using the Fisher information matrix, and
a normalization matrix is introduced (see [18]) i.e.,

K =


(N3+K3−N2K2)−

1
2 0 0 0

0 N− 1
2 0 0

0 0 (K3N)−
1
2 0

0 0 0 N− 1
2 I2L

 ,
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where I2L is a 2L× 2L identity matrix, such that

ln |Ĥm| = ln |K−2|+ ln |KĤmK|, (5)

where the last term, which is of order O(1), is ignored, and
the first term is used as a penalty term. We can now state the
joint pitch and model order estimator used to compute initial
estimates for sources m = 1, . . . ,M , i.e.,

{
ω̂0,m, L̂m

}
= arg min
αm,{ω0,m,Lm}

ln |K−2|
2

+N

K−1∑
k=0

ln
∥∥βk,m∥∥2

2
, (6)

where βk,m = r
(m−1)
k − ZmG(k,m)αm, and r

(m)
k =

[rmk (0) rmk (1) · · · rmk (N−1)]T . It should be noted that the
cost function is multi-modal, and we therefore perform the
minimization with respect to ω0,m using a grid search. The
LS estimates of the amplitudes αm for each candidate ω0,m

are [19]

α̂m =

[
K−1∑
k=0

GH(k,m)ZHmZmG(k,m)

]−1

·

K−1∑
k=0

GH(k,m)ZHmr
(m−1)
k ,

(7)

which are estimated for each of the m sources. The fun-
damental frequencies and amplitudes of the M sources are
then obtained by computing the residual (4) and estimating
the fundamental frequency using (6) and the amplitudes us-
ing (7). However, estimating the amplitudes of overlapping
harmonics is an ill-posed problem. To solve this, we propose
mapping the vector Âm, where each entry is the magnitude
of the corresponding entry in α̂m to entries in a codebook
of realistic amplitudes, each with unit norm, using a vector
quantizer, i.e.,

Âm → Am ∈ C.

In principle this can be done for all possible ω0,m, but to re-
duce the computational requirements, we restrict the possible
fundamental frequency candidates to be the 100 minima of
the cost function in (6). In this work, the mapping of ampli-
tudes α̂m to codebook entries is done, according to the EXIP
[20, 21], by finding

Ãm = min
γm∈R+,Am∈C

∥∥∥Âm − γmAm

∥∥∥2

2
, (8)

where γm is a scaling factor, to limit the size of the code-
book. The codebook is generated by jointly estimating the
fundamental frequency and the model order of a set of record-
ings of monophonic signals. The dimension of the amplitude
vectors varies with the model order and the fundamental fre-
quency. To further limit the size of the codebook, the dimen-
sion of the amplitude vectors is converted to fixed dimension
using a non-square transform, in this case zero padding, if the

model order is less than the fixed dimension, and truncation
vice versa [22]. The amplitudes Ãm in (8) are combined with
the phases of the initial amplitude estimates α̂m to result in
the amplitude estimates of the mth source, i.e.,

α̃m = [Ã1,me
j∠α̂1,m · · · ÃLm,me

j∠α̂Lm,m ]T .

These amplitudes can be substituted in (6), to obtain refined
estimates of the fundamental frequency and model order of
source m, i.e.,

{
ω̃0,m, L̃m

}
= arg min
αm,{ω0,m,Lm}

ln |K−2|
2

+N

K−1∑
k=0

ln
∥∥∥β̃k,m∥∥∥2

2
(9)

where β̃k,m = r
(m−1)
k − ZmG(k,m)α̃m. As an example of

what we want to avoid, the magnitude of the amplitudes of
the harmonics should not be allowed to evolve non-smoothly
across frequencies, i.e., the spectral smoothness principle is
used [12]. Using the approach proposed here, the magnitudes
of the harmonic amplitudes are constrained to have values that
would be considered realistic. The method proposed in this
section, which is a modification of the harmonic matching
pursuit [7], could be used to initialize an EM algorithm, to
yield better estimates [6]. It should be noted that the pan-
ning parameters are assumed known in this work, however, a
method for joint DOA and pitch estimation, such as the one in
[2] could be used to estimate the panning parameters. Further-
more, it could be exploited that the parameters evolve slowly
over time, to allow processing of larger chunks of the signals.

4. EXPERIMENTS

We now present the experimental setup along with the evalu-
ation of the proposed multi-pitch estimator. The experiments
have been conducted using mixtures of real recordings of a
Bb trumpet (played with vibrato) and a French horn, from the
IOWA database1. Data from the MAPS database of piano sig-
nals [11] has also been used for the evaluation. The mixtures
generated using the IOWA database each contain recordings
of four notes played simultaneously (M = 4). A codebook of
amplitudes is trained using 10 recordings of different wood-
wind instruments each playing a succession of notes, ranging
from C4 (262 Hz) to B4 (494 Hz). The recordings are single-
channel with fs = 44.1 kHz, however, they are downsampled
to fs = 8 kHz. The ANLS joint pitch and model order es-
timator in [6] has been used to jointly estimate the pitch and
model order for segments of length N = 240 samples. The
pitch and model order estimates are then used to form LS es-
timates of the amplitudes (7) for each frame of each signal,
resulting in 11544 amplitude vectors. Each amplitude vector
is scaled to have unit norm before vector quantization. The
chosen codeword is then scaled to match the original ampli-
tude vector. The codebook has been trained using K-means

1Available at http://theremin.music.uiowa.edu.
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Table 1. GERs for the experiment with IOWA mixtures. The
chords are listed using integer notation (t: trumpet, h: horn).

Notes (t-t-h-h) Proposed BW2015 ESACF

0-4-7-11 0.0207 0.4861 0.4345
0-3-7-8 0.0143 0.4226 0.4741
0-4-5-9 0.0143 0.5000 0.2378
0-1-5-8 0.0256 0.4980 0.2363
0-3-7-10 0.0156 0.5119 0.6692
0-4-7-9 0.0255 0.3393 0.2378
0-3-5-8 0.0321 0.4782 0.2241
0-2-5-9 0.0223 0.3254 0.4726

[23], where 15 harmonics of the woodwind signals are con-
sidered. The dimension of the codebook is converted using
a non-square transform, as described in the previous section.
Different choices of the number of clusters for the training of
the codebooks have been considered, varying from 1 to 100
clusters. Empirically, a suitable number of codewords was
found to be 20, which is the number of clusters used here.

Two experiments were conducted. In the first experiment,
signals are generated by mixing two recordings of notes
played using a Bb trumpet, and two notes played using a
French horn, i.e., four notes, together forming a 7th chord,
using data from the IOWA database. It should be noted that
the training data set used for training the codebook, and the
test data set used to generate the mixtures are disjoint. In to-
tal, eight mixtures are generated. The choice of notes is done
in a way similar to in [11]. Figure 1 shows an example of a
spectrogram of such a mixture, with pitch estimates. Stereo
versions of the mixtures of trumpet and horn signals were
generated by applying amplitude and delay panning, as de-
scribed in Section 2. As mentioned, the panning parameters
are assumed known in this work, however, the parameters can
be found by adding search dimensions to (9). The panning
parameters of the trumpet submixture are θ = 25◦, τ0 = 0
ms, τ1 = 18 ms while for the horn submixture, they are
θ = 65◦, τ0 = 18 ms, τ1 = 0 ms. For the proposed method,
the fundamental frequencies are obtained by performing a
grid search from 100 Hz to fs/4 = 2000 Hz, with a step
size of 1 Hz. The performance of the proposed method has
been compared to the method presented in [10], which we
will denote BW20152 in the figures, and the MIRtoolbox [24]
implementation of the ESACF method [5]. For each mixture,
the gross error rate (GER) is calculated, which is the number
of fundamental frequencies that deviate more than a semitone
relative to the ground truth, which is generated using the joint
ANLS estimator [6]. The results are shown in Table 1.

In the second experiment, data from the MAPS database,

2The source code is available at https://code.soundsoftware.
ac.uk/projects/amt_plca_5d.

Fig. 1. Spectrogram (top) and pitch estimates (bottom) of
a multi-pitch mixture of two instruments, trumpet and horn,
playing the notes C4 (262 Hz), E4 (330 Hz), G4 (392 Hz) and
B4 (494 Hz), respectively.

i.e., recordings of a set of two-note chords using the ENST-
DkCl piano, was used. Eight recordings containing signals
with fundamental frequencies ranging from C3 (131 Hz) and
B5 (988 Hz) were chosen. The data used is single-channel,
i.e, K = 1, and the number of sources isM = 2. This type of
evaluation is similar to the one in [13], however, here the pitch
is estimated jointly with the model order. The metric used
is similar to the one used in the first experiment. The mean
GERs were 0.4064 for the proposed method, and 0.2006, for
the method presented in [10], respectively.

5. DISCUSSION

In this paper, a method for joint multi-pitch and model or-
der estimation of delay and amplitude panned mixtures of
harmonic sources has been proposed. The method presented
here extends the work in [14] and [13], where stereophonic
mixtures of monophonic sources, and single-channel multi-
pitch mixtures were considered, respectively. The proposed
method is based on a signal model that takes the panning
parameters of a mixture into account. Furthermore, a code-
book of amplitude vectors is used to quantize the magnitude
of the amplitudes when estimating the multiple fundamen-
tal frequencies. For the IOWA mixtures considered, the pro-
posed method outperforms the methods to which it has been
compared to, with mean GERs of 0.0331 for the proposed
method, 0.4452 for the BW2015 method [10], and 0.3733 for
the ESACF method [5], respectively. In the second experi-
ment, with piano data, the BW2015 method outperforms the
proposed method. However, it should be noted that the pro-
posed method is based on a harmonic signal model, whereas
piano signals can be considered to be quite inharmonic. Fur-
thermore, since the proposed method estimates continuous
pitch, it is possible to observe tonal details, such as vibrato.
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[20] P. Stoica and T. Söderström, “On reparametrization of
loss functions used in estimation and the invariance prin-
ciple,” Signal Process., vol. 17, pp. 383–387, 1989.

[21] M. G. Christensen, “Metrics for vector quantization-
based parametric speech enhancement and separation,”
J. Acoust. Soc. Am., vol. 133, no. 5, pp. 3062–3071,
2013.

[22] C. Li, P. Lupini, E. Shlomot, and V. Cuperman, “Cod-
ing of variable dimension speech spectral vectors us-
ing weighted nonsquare transform vector quantization,”
IEEE Trans. Speech Audio Process., vol. 9, no. 6, pp.
622–631, Sep 2001.

[23] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for
vector quantizer design,” IEEE Trans. Commun., vol.
28, no. 1, pp. 84–95, Jan 1980.

[24] O. Lartillot and P. Toiviainen, “A MATLAB toolbox for
musical feature extraction from audio,” in Proc. of the
10th Int. Conference on Digital Audio Effects (DAFx-
07), 2007.

190


