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ABSTRACT

Robust extraction of performance data from polyphonic musical per-
formances requires precise frame-level estimation of fundamental
frequency (f0) and power. This paper evaluates a new score-guided
approach to f0 and power estimation in polyphonic audio and com-
pares the use of four different input features: the central bin frequen-
cies of the spectrogram, the instantaneous frequency, and two variants
of a high resolution spectral analysis. These four features were evalu-
ated on four-part multi-track ensemble recordings, consisting of either
four vocalists or bassoon, clarinet, saxophone, and violin (the Bach10
data set) created from polyphonic mixes of the monophonic tracks
both with and without artificial reverberation. Score information was
used to identify time-frequency regions of interest in the polyphonic
mixes for each note in a corresponding aligned score, from which
f0 and power estimates were made. The approach was able to re-
cover ground truth f0 within 20 cents on average in reverberation and
power within 5 dB for anechoic mixtures, but only within 10 dB for
reverberant.

Index Terms— fundamental frequency estimation, power esti-
mation, score-informed signal processing

1. INTRODUCTION

Precise, frame-level estimation of performance parameters from audio
is a necessary first step in empirically measuring musical performance
parameters. While numerous solutions exist for extracting this type
of information from monophonic audio, e.g., [1], estimating this
information from polyphonic audio remains an unsolved problem.
Score-guided approaches offer a means of reducing the complexity
of the problem that blind transcription methods face, by providing an
indication of the time-frequency regions of the signal associated with
each musical note.

This paper describes the evaluation of a new score-guided ap-
proach to fundamental frequency (f0) and power estimation in poly-
phonic audio and compares four different input features: the discrete
Fourier transform, the instantaneous frequency, and two versions of
high resolution spectral analysis. The polyphonic audio-based f0
and power estimates can successfully estimate f0 and power mea-
surements generated by the pYIN algorithm on corresponding mono-
phonic audio tracks.

∗Thanks to National Endowment for the Humanities Office of Digital
Humanities (Grant number HD-228966-15).

2. BACKGROUND

Alignment between audio and a corresponding musical score can be
used for estimating note onsets and offsets and generally performs
with more precision than blind estimation algorithms. The use of a
digitized version of a musical score, typically in MIDI, as a guide
to facilitate transcription was first described in [2]. While earlier
work provided a single time estimate for notated simultaneities in
the musical score [3–7], more recent work has addressed the issue
of identifying asynchronies between notes marked as simultaneities
in the score [8–12], which allows for more precise guiding of signal
processing algorithms.

2.1. Score-Guided Estimation of f0

Polyphonic, frame-wise f0 estimation and note tracking (the determi-
nation of frames-wise f0 estimates that should be grouped together
into notes) are extremely challenging. Overall, there has been an
observable ceiling of 70% accuracy for the state-of-the-art methods,
regardless of their approach [13]. This has been demonstrated in the
recent history of the MIREX Multiple Fundamental Frequency Esti-
mation & Note Tracking task, where submitted systems are evaluated
on their ability to make frame-wise f0 estimates (within 50 cents of
the ground truth) as well as track notes and timbre: in 2016, the top
system’s accuracy was 53.7% [14] on the MIREX data set; in 2015, it
was 65.4% [15]; and in 2014, it was 72.3% [16]. A recent summary
article of the state-of-the-art in music transcription identifies score-
and perceptually-informed approaches as a potential way of breaking
the current performance ceiling [13].

2.2. Score-Guided Estimation of Power

To date, there has been only been limited work on power estimation in
polyphonic audio. [17] estimated note intensities in polyphonic piano
recordings using a corresponding score. The score was aligned to the
audio and used to create a parameterized model spectrogram, which
achieved 83% accuracy. This was evaluated against the calculation of
intensity from the energy in the spectrogram bins corresponding to
the fundamental and first five harmonics of each note in the aligned
score, which only achieved 66% accuracy.

3. EVALUATION OF SCORE-INFORMED APPROACH

3.1. f0 Estimates

The evaluated approach takes features of a single time frame and an
initial estimate of the f0 from the aligned score as input. The input
features consist of a set of magnitude measurements at a potentially

181978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



irregularly sampled set of frequencies, x(ωi). These measurements
come from a standard discrete Fourier transform, an instantaneous
frequency-gram, the high resolution spectral estimator, and the same
high resolution method applied after comb filtering at harmonics of
the initial f0 estimate1.

For any measurement type, we identify observations close to the
expected frequencies of the harmonics of the fundamental (including
the fundamental itself) based on the initial f0 value from the aligned
score. We then convert these frequencies to the frequency of the
corresponding fundamental by dividing by the harmonic number of
the closest harmonic, and then take the mean of these frequencies
weighted by their respective magnitudes. Mathematically this can be
expressed as

f̂0 =

∑
n

∑
ωi∈N (nf0)

ωi
n
x(ωi)∑

n

∑
ωi∈N (nf0)

x(ωi)
, (1)

whereN (nf0) is the set of frequencies in the neighborhood of nf0,
the nth harmonic. Because the output of this process is a more
refined estimate of f0, we can use this new estimate as the basis for
performing the same procedure again, leading to a further refined
estimate. In our experiments, this process tended to converge to a
stable estimate after 5–10 iterations, so we use 10.

When applied to the discrete Fourier transform (DFT), the ωi

frequency values are uniformly spaced between DC and Nyquist.
For the observations, we took the cube roots of the DFT magnitudes
in order to apply a non-negative perceptual weighting [18] that can
be used in a weighted sum. While the ωi grid itself is fixed for a
given DFT length and sampling frequency, the weighting in (1) can
interpolate f0 estimates between grid points.

The instantaneous frequency (IF) replaces the fixed frequency
grid of the DFT with frequency values estimated from the time deriva-
tive of the phase spectrum according to [19, 20], as implemented
in MATLAB by Dan Ellis2. The weights are still the cube root of
the DFT magnitudes at the corresponding points. The instantaneous
frequency essentially provides a modified estimate of the frequency
of the dominant sinusoid in each DFT bin. For a signal composed
of sinusoids that are spaced farther apart than the spacing of DFT
frequency samples, several consecutive frequencies will be dominated
by a single sinusoid and the instantaneous frequency will correctly
identify the frequency of this sinusoid in all of them. The IF features
use a neighborhood size, N (nf0) of 27 Hz, the equivalent of two
DFT bins, below and above the predicted frequency.

We also use features from the high resolution (HR) sinusoidal es-
timation method of [21]. It uses a generalized version of the ESPRIT
method to estimate mixtures of complex exponentials modulated by
polynomials. By assuming signal components are sinusoidal, these
estimation methods can achieve much more precise estimates of their
frequencies. We then measure the frequency and cube root of the
amplitude of each modulated complex exponential as ωi and x(ωi)
for (1). The HR features use a slightly wider neighborhood,N (nf0),
of 40 Hz, because it uses fewer frequency bands than the IF analysis.

The HR tended to produce noisy estimates at the beginnings and
ends of notes, where the signal tended to be noisier. To reduce this
variability, we introduced a novel pre-processing step for the high
resolution method (HR-C), which performed comb filtering using the
sum of a bank of zero-delay, constant-Q, one-zero gammatone filters
[22] with center frequencies placed at the harmonics of the estimated
fundamental. The purpose of such a filter is to remove energy outside
of the target frequencies, but to allow for larger error in the higher

1Code available at: http://www.ampact.org
2http://labrosa.ee.columbia.edu/projects/coversongs/ifgram.m.html
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Fig. 1. Magnitude response of the zero-delay, constant-Q, one-zero
IIR gammatone filters and their combination into the final comb
filter used for pre-processing the audio before analyzing it with the
high-resolution spectral analysis method.

harmonics, where small changes in fundamental are amplified. See
Figure 1 for an example filter response and the filters from which
it was composed. We used the gammatone filter implementation
from the Voicebox toolkit3, with third-order IIR gammatone filters,
a Q-factor of 12, and the first 40 harmonics. The signal was filtered
forward in time and then backward in time to achieve zero delay.

3.2. Power Estimates

The power estimates were derived from the same data as the f0
estimates in (1), except that instead of using cube root compressed
magnitudes, they used squared magnitudes, designated x̃(ωi). In
particular, for a given estimated f0, the power was estimated as

p̂(f0) =
∑
n

∑
ωi∈N (nf0)

x̃(ωi). (2)

By using a neighborhood larger than a single frequency, this method
is very unlikely to miss any target energy, but could accidentally
include additional energy from simultaneous notes.

4. EXPERIMENTS

4.1. Materials

The first part of the test set is the Bach 10 dataset, which contains
10 four-part Bach chorales recorded by violin, clarinet, saxophone
and bassoon for a 330 seconds of annotated multi-part audio [23].
The second part is 40 seconds from the opening of “Kyrie” from
Machaut’s four-part Messe de Notre Dame recorded by soprano,
alto, tenor, and bass [24]. The Bach10 dataset consists of hand
annotated onset estimates for each notated simultaneity, while the
Machaut recordings consist of hand annotated onsets and offsets
for each individual monophonic line (thus accounting for timing
asynchronies between musical lines). In the experiment, the available
hand annotated timings were used instead of MIDI alignment to avoid
propagating error from the onset/offset estimation step to the f0 and
power estimation. In addition, note boundaries were further refined
by keeping only the time samples for each note corresponding to the
longest contiguous segment having a monophonic YIN periodicity
estimate of at least 95%. MIDI note information corresponding to
each onset was also provided in both datasets. The combination of

3http://www.ee.imperial.ac.uk/hp/staff/dmb/voicebox/voicebox.html
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Fig. 2. Plots of the difference between the f0 and power estimates from the score-informed algorithms on polyphonic audio and the YIN f0 and
power estimates on monophonic audio. Shown as a function of amount of reverberation, as determined by the source-to-microphone distance.
Error bars show twice the standard error of the mean.

timing and MIDI note information was used to specify time-frequency
regions of interest used by the algorithms described in Section 3.

These signals were convolved with several impulse responses
from the Open AIR library, a collection of impulse responses shared
under Creative Commons licenses. These particular impulse re-
sponses were recorded in St Margaret’s Church in York, England,
the British National Center for Early Music. They were collected by
playing a swept sine wave from a Genelec S30D speaker placed at
the location where performers stand, and recorded on a Soundfield
SPS422B Microphone at three different distances from the speaker
(3.6 M, 7.7 M, and 11 M). Only the omni-directional component of
the sound field recording was used. The RT60 reverberation time of
the room was 1.4 s. In addition to the reverberant simulations, we
also tested the system on the original, anechoic recordings.

4.2. Ground Truth

The Bach10 and Machaut datasets provide ground truth information
regarding the MIDI notes in the multitracked audio. This, however, is
not sufficiently detailed for our evaluation since we are interested in
measuring the microtonal pitch variations produced by performers,
rather than just finding which note is being played. Thus, for the
purposes of this experiment, the ground truth against which the score-
guided frame-wise f0 estimates in reverberant polyphonic mixes were
evaluated was calculated on the corresponding anechoic monophonic
tracks using the pYIN algorithm [25]. pYIN is an extension of
the YIN algorithm [1] that probabilistically estimates the threshold
parameter in YIN in order to reduce octave errors and generally
improve f0 estimation. pYIN was run using the its authors’ VAMP

plugin4 with a window size of 2048 and the hop size of 256. The
error between the estimates and the ground truth was measured in
cents. This is based on the ground truth approach used in the MIREX
evaluation, except that in that evaluation octave-errors made by YIN
were hand-corrected. To combine these errors across all of the frames
of a note, the root mean square error was computed

E =

√∑
n

(
f̂0(n)− f0(n)

)2
. (3)

The ground truth for the power estimates was calculated in a similar
way, using the RMS estimates produced by the pYIN VAMP plugin.
We noticed that many of the errors in estimation happened around
the annotated onsets and offsets of notes, even with the use of YIN’s
periodicity estimate to identify the periodic portion of each note. We
thus provide results both on the entire notes and on the central 80%
of each note, discarding the 10% of frames at the beginning and end.

4.3. Results

Figure 2 compares the estimates of the four score-informed algo-
rithms on the polyphonic mixes against the pYIN estimates on the
corresponding anechoic, monophonic tracks as a function of rever-
beration. It shows these comparisons for both the entire notes and
the central 80% of frames of each note, trimming off the ends that
contain most of the erroneous estimates due to transitions in and out
of the notes. The figure shows that for f0, the high resolution (HR) es-
timates have the largest error, caused by numerous spurious estimates.
The use of the comb filter is quite effective at reducing these spurious

4https://code.soundsoftware.ac.uk/projects/pyin
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Fig. 3. Traces of the f0 and power estimates produced by YIN on the monophonic audio of the first four notes of soprano line of “Ach Gottund
Herr”, performed on violin, and the f0 and power estimates for the corresponding notes calculated using each feature with the score-informed
approach on the reverberant polyphonic audio with a source-mic distance of 3.6 M.

peaks, by focusing the high resolution method on the neighborhood
of the harmonics of the approximate fundamental. The IF and DFT
estimates both perform better than the HR-C features, with the DFT
slightly, but not significantly, outperforming the IF method. When
the ends of the notes are trimmed off, the IF and DFT results are not
affected much, but the HR and HR-C features perform much better.
In this condition, the HR-C features perform comparably to the IF and
DFT features, showing that many of the errors in the HR-C estimates
occur at the beginnings and ends of notes. When reverberation is
introduced, it tends to harm the IF estimates the most, causing the
error to increase with increasing source-mic distance. This is likely
caused by reverberant speech violating the assumption that there is a
single sinusoid in each DFT bin.

For power estimation, shown in the bottom row of Figure 2, the
IF and DFT features are equivalently accurate, followed by the HR-C
and then HR features. The equivalence between IF and DFT makes
sense, as they use the same magnitude estimates. They could differ
in their inclusion or exclusion of bins in the weighted sum of 1 due to
differences in frequency estimates, but these results suggest that they
do not differ much. The results also show that the comb filtering oper-
ation is able to make the power estimation more accurate by removing
energy from spurious frequency estimates. Estimating the original
anechoic power of a signal in reverberant conditions is difficult. All
of the features tested here perform worse for power estimation in
reverberation, but maintain the same relative performance.

In order to use a similar metric to the MIREX evaluation, we also
calculated the number of frames that were more than one semitone
(50 cents) from the ground truth. For the anechoic version of the
signals the DFT features had 2.6% frames beyond this threshold, IF
1.1%, HR 8.0%, and HR-C 1.5%. These results detoriated with the
introduction of reverberation, where the DFT features had 3.4%, IF
3.2%, HR 14.0%, and HR-C 2.6%. These values are all for the entire
notes, with no trimming.

The run time of the DFT and IF features are comparable, with
the IF running at 1.06 times the speed of the DFT. Extracting HR
features is much slower, with the simple HR method running 14.49
times slower than the DFT and HR-C running 17.83 times slower.

A closer evaluation of the performance of the algorithms is shown
in Figure 3. In the figure, (a) visualizes the f0 trace of a four-note
segment estimated by each of the algorithms (pYIN, DFT, IF, HR,

and HR-C). The most notable differences between the f0 traces is the
larger number of spurious estimates from the HR algorithm in the
first note (0.2–0.8 s) and the smoothing of the vibrato by the DFT in
the fourth note (2.1–3.2 s). While (b) shows the power estimate trace
of the same four-note segment as Figure 3(a). All of the estimates
follow the same trend as each other, particularly for the first two
notes (0.2–1.5 s). Although the HR without comb filtering has more
spurious estimates. For the third note (1.5–2.0 s), pYIN’s estimate
is smoother than those based on the polyphonic recording. This
discrepancy may be due to activities in the other voices. In the fourth
note (2.1–3.2 s), HR and HR-C consistently over-estimate the power
compared to pYIN, IF, and DFT. This is likely an illustration of the
larger trend exhibited in the frame-level results.

5. CONCLUSIONS

Overall, the proposed score-guided approach is able to estimate f0
and power for individual voices from a reverberant polyphonic mix-
ture. The DFT and instantaneous frequency features performed best
in terms of having the lowest RMS error for both f0 and power esti-
mates. When omitting onset and offset portions of notes, the comb
filtered high resolution features performed comparably as well. The
use of the comb filter as pre-processing for the HR analysis signif-
icantly improves the performance of the algorithm for both f0 and
power estimation. The addition of reverberation caused some chal-
lenges with power estimation, but did not have much effect on f0
estimation. The performance of the IF features deteriorated slightly
in reverberation, but not significantly.

The next step in this project is to move from frame-wise mea-
surements to note-wise estimates informed by perceptual models.
Perceptually-informed note-wise estimates are important for apply-
ing these algorithms to the study of expressive musical performance.
This is fairly straightforward in the case of perceived pitch, where a
model need only be applied to the f0 estimates, e.g., [26]. Perceived
loudness estimation is more complicated because a cochlear model
would need access to frame-wise estimates of all partials, e.g., [27].
In the future we will also investigate alternatives to using pYIN to
generate ground truth, such as synthesized tracks using high-quality
vocal models.
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